Heme Oxygenase: References

1.Tenhunen,R., Marver,H.S., & Schmid,R. The enzymatic conversion of heme to bilirubin by microsomal heme oxygenase. Proc. Natl. Acad. Sci. U. S. A 61, 748-755 (1968). [PubMed]

2.Trakshel,G.M., Kutty,R.K., & Maines,M.D. Purification and characterization of the major constitutive form of testicular heme oxygenase. The noninducible isoform. J. Biol. Chem. 261, 11131-11137 (1986). [PubMed]

3.Braggins,P.E., Trakshel,G.M., Kutty,R.K., & Maines,M.D. Characterization of two heme oxygenase isoforms in rat spleen: comparison with the hematin-induced and constitutive isoforms of the liver. Biochem. Biophys. Res. Commun. 141, 528-533 (1986). [PubMed]

4.Maines,M.D., Trakshel,G.M., & Kutty,R.K. Characterization of two constitutive forms of rat liver microsomal heme oxygenase. Only one molecular species of the enzyme is inducible. J. Biol. Chem. 261, 411-419 (1986). [PubMed]

5.Jiang,J., Westberg,J.A., & Andersson,L.C. Stanniocalcin 2, forms a complex with heme oxygenase 1, binds hemin and is a heat shock protein. Biochem. Biophys. Res. Commun. 421, 274-279 (2012). [PubMed]

6.Bian,C. et al. A novel heme oxygenase-1 splice variant, 14kDa HO-1, promotes cell proliferation and increases relative telomere length. Biochem. Biophys. Res. Commun. 500, 429-434 (2018). [PubMed]

7.Converso,D.P. et al. HO-1 is located in liver mitochondria and modulates mitochondrial heme content and metabolism. FASEB J. 20, 1236-1238 (2006). [PubMed]

8.Slebos,D.J. et al. Mitochondrial localization and function of heme oxygenase-1 in cigarette smoke-induced cell death. Am. J. Respir. Cell Mol. Biol. 36, 409-417 (2007). [PubMed]

9.Kim,H.P., Wang,X., Galbiati,F., Ryter,S.W., & Choi,A.M. Caveolae compartmentalization of heme oxygenase-1 in endothelial cells. FASEB J. 18, 1080-1089 (2004). [PubMed]

10.Gisk,B., Yasui,Y., Kohchi,T., & Frankenberg-Dinkel,N. Characterization of the haem oxygenase protein family in Arabidopsis thaliana reveals a diversity of functions. Biochem. J. 425, 425-434 (2010). [PubMed]

11.Lojek,L.J. et al. Chlamydomonas reinhardtii LFO1 is an IsdG family heme oxygenase. mSphere 2, pii: e00176-17 (2017). [PubMed]

12.Muramoto,T., Kohchi,T., Yokota,A., Hwang,I., & Goodman,H.M. The Arabidopsis photomorphogenic mutant hy1 is deficient in phytochrome chromophore biosynthesis as a result of a mutation in a plastid heme oxygenase. Plant Cell 11, 335-348 (1999). [PubMed]

13.Richaud,C. & Zabulon,G. The heme oxygenase gene (pbsA) in the red alga Rhodella violacea1 is discontinuous and transcriptionally activated during iron limitation. Proc. Natl. Acad. Sci. U. S. A 94, 11736-11741 (1997). [PubMed]

14.Eide,I.P. et al. Decidual expression and maternal serum levels of heme oxygenase 1 are increased in pre-eclampsia. Acta Obstet. Gynecol. Scand. 87, 272-279 (2008). [PubMed]

15.Lin,Q. et al. Heme oxygenase-1 protein localizes to the nucleus and activates transcription factors important in oxidative stress. J. Biol. Chem. 282, 20621-20633 (2007). [PubMed]

16.Ryter,S.W. & Choi,A.M. Targeting heme oxygenase-1 and carbon monoxide for therapeutic modulation of inflammation. Transl. Res. 167, 7-34 (2016). [PubMed]

17.Vanella,L. et al. The non-canonical functions of the heme oxygenases. Oncotarget 7, 69075-69086 (2016). [CrossRef]

18.Signorelli,S.S. et al. Circulating miR-130a, miR-27b, and miR-210 in patients with peripheral artery disease and their potential relationship with oxidative stress. Angiology 67, 945-950 (2016). [PubMed]

19.Serpero,L.D. et al. Next generation biomarkers for brain injury. J. Matern. Fetal Neonatal Med. 26 Suppl 2, 44-49 (2013). [PubMed]

20.Serpero,L.D., Frigiola,A., & Gazzolo,D. Human milk and formulae: neurotrophic and new biological factors. Early Hum. Dev. 88 Suppl 1, S9-12 (2012). [PubMed]

21.Dunn,L.L. et al. New insights into intracellular locations and functions of heme oxygenase-1. Antioxid. Redox Signal. 20, 1723-1742 (2014). [PubMed]

22.Bekeschus,S., Freund,E., Wende,K., Gandhirajan,R.K., & Schmidt,A. Hmox1 upregulation is a mutual marker in human tumor cells exposed to physical plasma-derived oxidants. Antioxidants (Basel) 7, pii: E151 (2018). [PubMed]

23.Gueron,G. et al. Critical role of endogenous heme oxygenase 1 as a tuner of the invasive potential of prostate cancer cells. Mol. Cancer Res. 7, 1745-1755 (2009). [PubMed]

24.Hill,M. et al. Heme oxygenase-1 inhibits rat and human breast cancer cell proliferation: mutual cross inhibition with indoleamine 2,3-dioxygenase. FASEB J. 19, 1957-1968 (2005). [PubMed]

25.Podkalicka,P., Mucha,O., Jozkowicz,A., Dulak,J., & Loboda,A. Heme oxygenase inhibition in cancers: possible tools and targets. Contemp. Oncol. (Pozn. ) 22, 23-32 (2018). [PubMed]

26.Skrzypek,K. et al. Interplay between heme oxygenase-1 and miR-378 affects non-small cell lung carcinoma growth, vascularization, and metastasis. Antioxid. Redox Signal. 19, 644-660 (2013).

27.Nakajima,H. Studies on heme a-methenyl oxygenase. II. The isolation and characterization of the final reaction product, a possible precursor of biliverdin. J. Biol. Chem. 238, 3797-3801 (1963). [PubMed]

28.Nakajima,H., Takemura,T., Nakajima,O., & Yamaoka,K. Studies on heme a-methenyl oxygenase. I. The enzymatic conversion of pyridine-hemichromogen and hemoglobin-haptoglobin into a possible precursor of biliverdin. J. Biol. Chem. 238, 3784-3796 (1963). [PubMed]

29.Tenhunen,R., Marver,H.S., & Schmid,R. Microsomal heme oxygenase. Characterization of the enzyme. J. Biol. Chem. 244, 6388-6394 (1969). [PubMed]

30.Ritossa,F. A new puffing pattern induced by temperature shock and DNP in Drosophila. Experientia 18, 571-573 (1962). [CrossRef]

31.Ritossa,F. New puffs induced by temperature shock, DNP and salicilate in salivary chromosomes of D. melanogaster. Drosophila Information Service 37, 122-123 (1963). [Drosophila Information Service]

32.Ritossa,F. Experimental activation of specific loci in polytene chromosomes of Drosophila. Exp. Cell Res. 35, 601-607 (1964). [CrossRef]

33.Tissières,A., Mitchell,H.K., & Tracy,U.M. Protein synthesis in salivary glands of Drosophila melanogaster: relation to chromosome puffs. J. Mol. Biol. 84, 389-398 (1974). [PubMed]

34.Lindquist,S. & Craig,E.A. The heat-shock proteins. Annu. Rev. Genet. 22, 631-677 (1988). [PubMed]

35.Schlesinger,M.J., Ashburner,M., & Tissières,A. Heat shock, from bacteria to man. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (1982).

36.Yoshida,T. & Kikuchi,G. Purification and properties of heme oxygenase from pig spleen microsomes. J. Biol. Chem. 253, 4224-4229 (1978). [PubMed]

37.Yoshida,T. & Kikuchi,G. Purification and properties of heme oxygenase from rat liver microsomes. J. Biol. Chem. 254, 4487-4491 (1979). [PubMed]

38.Maines,M.D., Ibrahim,N.G., & Kappas,A. Solubilization and partial purification of heme oxygenase from rat liver. J. Biol. Chem. 252, 5900-5903 (1977). [PubMed]

39.McCoubrey,W.K., Jr., Huang,T.J., & Maines,M.D. Isolation and characterization of a cDNA from the rat brain that encodes hemoprotein heme oxygenase-3. Eur. J. Biochem. 247, 725-732 (1997). [PubMed]

40.Hayashi,S. et al. Characterization of rat heme oxygenase-3 gene. Implication of processed pseudogenes derived from heme oxygenase-2 gene. Gene 336, 241-250 (2004). [PubMed]

41.Wilks,A. & Schmitt,M.P. Expression and characterization of a heme oxygenase (Hmu O) from Corynebacterium diphtheriae. Iron acquisition requires oxidative cleavage of the heme macrocycle. J. Biol. Chem. 273, 837-841 (1998). [PubMed]

42.Schmitt,M.P. Utilization of host iron sources by Corynebacterium diphtheriae: identification of a gene whose product is homologous to eukaryotic heme oxygenases and is required for acquisition of iron from heme and hemoglobin. J. Bacteriol. 179, 838-845 (1997). [PubMed]

43.Zhu,W., Hunt,D.J., Richardson,A.R., & Stojiljkovic,I. Use of heme compounds as iron sources by pathogenic neisseriae requires the product of the hemO gene. J. Bacteriol. 182, 439-447 (2000). [PubMed]

44.Zhu,W., Wilks,A., & Stojiljkovic,I. Degradation of heme in gram-negative bacteria: the product of the hemO gene of Neisseriae is a heme oxygenase. J. Bacteriol. 182, 6783-6790 (2000). [PubMed]

45.Protchenko,O. & Philpott,C.C. Regulation of intracellular heme levels by HMX1, a homologue of heme oxygenase, in Saccharomyces cerevisiae. J. Biol. Chem. 278, 36582-36587 (2003). [PubMed]

46.Santos,R. et al. Haemin uptake and use as an iron source by Candida albicans: role of CaHMX1-encoded haem oxygenase. Microbiology 149, 579-588 (2003). [PubMed]

47.Chim,N., Iniguez,A., Nguyen,T.Q., & Goulding,C.W. Unusual diheme conformation of the heme-degrading protein from Mycobacterium tuberculosis. J. Mol. Biol. 395, 595-608 (2010). [PubMed]

48.Skaar,E.P., Gaspar,A.H., & Schneewind,O. IsdG and IsdI, heme-degrading enzymes in the cytoplasm of Staphylococcus aureus. J. Biol. Chem. 279, 436-443 (2004). [PubMed]

49.Davis,S.J., Kurepa,J., & Vierstra,R.D. The Arabidopsis thaliana HY1 locus, required for phytochrome-chromophore biosynthesis, encodes a protein related to heme oxygenases. Proc. Natl. Acad. Sci. U. S. A 96, 6541-6546 (1999). [PubMed]

50.Keyse,S.M. & Tyrrell,R.M. Both near ultraviolet radiation and the oxidizing agent hydrogen peroxide induce a 32-kDa stress protein in normal human skin fibroblasts. J. Biol. Chem. 262, 14821-14825 (1987). [PubMed]

51.Keyse,S.M. & Tyrrell,R.M. Heme oxygenase is the major 32-kDa stress protein induced in human skin fibroblasts by UVA radiation, hydrogen peroxide, and sodium arsenite. Proc. Natl. Acad. Sci. U. S. A 86, 99-103 (1989). [PubMed]

52.Kageyama,H., Hiwasa,T., Tokunaga,K., & Sakiyama,S. Isolation and characterization of a complementary DNA clone for a Mr 32,000 protein which is induced with tumor promoters in BALB/c 3T3 cells. Cancer Res. 48, 4795-4798 (1988). [PubMed]

53.Shibahara,S., Muller,R.M., & Taguchi,H. Transcriptional control of rat heme oxygenase by heat shock. J. Biol. Chem. 262, 12889-12892 (1987). [PubMed]

54.Yoshida,T., Biro,P., Cohen,T., Muller,R.M., & Shibahara,S. Human heme oxygenase cDNA and induction of its mRNA by hemin. Eur. J. Biochem. 171, 457-461 (1988). [PubMed]

55.Shibahara,S., Sato,M., Muller,R.M., & Yoshida,T. Structural organization of the human heme oxygenase gene and the function of its promoter. Eur. J. Biochem. 179, 557-563 (1989). [PubMed]

56.Yoshida,T. & Sato,M. Posttranslational and direct integration of heme oxygenase into microsomes. Biochem. Biophys. Res. Commun. 163, 1086-1092 (1989). [PubMed]

57.Schuller,D.J., Wilks,A., Ortiz de Montellano,P.R., & Poulos,T.L. Crystal structure of human heme oxygenase-1. Nat. Struct. Biol. 6, 860-867 (1999). [PubMed]

58.Schuller,D.J., Zhu,W., Stojiljkovic,I., Wilks,A., & Poulos,T.L. Crystal structure of heme oxygenase from the gram-negative pathogen Neisseria meningitidis and a comparison with mammalian heme oxygenase-1. Biochemistry 40, 11552-11558 (2001). [PubMed]

59.Sugishima,M. et al. Crystal structure of rat heme oxygenase-1 in complex with heme. FEBS Lett. 471, 61-66 (2000). [PubMed]

60.Lad,L. et al. Comparison of the heme-free and -bound crystal structures of human heme oxygenase-1. J. Biol. Chem. 278, 7834-7843 (2003). [PubMed]

61.Hwang,H.W. et al. Oligomerization is crucial for the stability and function of heme oxygenase-1 in the endoplasmic reticulum. J. Biol. Chem. 284, 22672-22679 (2009). [PubMed]

62.Bianchetti,C.M., Yi,L., Ragsdale,S.W., & Phillips,G.N., Jr. Comparison of apo- and heme-bound crystal structures of a truncated human heme oxygenase-2. J. Biol. Chem. 282, 37624-37631 (2007). [PubMed]

63.Bagai,I. et al. Spectroscopic studies reveal that the heme regulatory motifs of heme oxygenase-2 are dynamically disordered and exhibit redox-dependent interaction with heme. Biochemistry 54, 2693-2708 (2015). [PubMed]

64.Zhu,Y. et al. Heme oxygenase 2 binds myristate to regulate retrovirus assembly and TLR4 signaling. Cell Host Microbe 21, 220-230 (2017). [PubMed]

65.Ryter,S.W., Alam,J., & Choi,A.M. Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol. Rev. 86, 583-650 (2006). [PubMed]

66.Ryter,S.W. & Choi,A.M. Heme oxygenase-1/carbon monoxide: from metabolism to molecular therapy. Am. J. Respir. Cell Mol. Biol. 41, 251-260 (2009). [PubMed]

67.Maines,M.D. The heme oxygenase system: a regulator of second messenger gases. Annu. Rev. Pharmacol. Toxicol. 37, 517-554 (1997). [PubMed]

68.Olsen,J.V. et al. Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci. Signal. 3, ra3 (2010). [PubMed]

69.Boehning,D., Sedaghat,L., Sedlak,T.W., & Snyder,S.H. Heme oxygenase-2 is activated by calcium-calmodulin. J. Biol. Chem. 279, 30927-30930 (2004). [PubMed]

70.Boehning,D. et al. Carbon monoxide neurotransmission activated by CK2 phosphorylation of heme oxygenase-2. Neuron 40, 129-137 (2003). [PubMed]

71.Salinas,M. et al. Protein kinase Akt/PKB phosphorylates heme oxygenase-1 in vitro and in vivo. FEBS Lett. 578, 90-94 (2004). [PubMed]

72.Hsu,F.F. et al. Acetylation is essential for nuclear heme oxygenase-1-enhanced tumor growth and invasiveness. Oncogene 36, 6805-6814 (2017). [PubMed]

73.Gauci,S. et al. Lys-N and trypsin cover complementary parts of the phosphoproteome in a refined SCX-based approach. Anal. Chem. 81, 4493-4501 (2009). [PubMed]

74.Yamamoto,N. et al. Elevation of heme oxygenase-1 by proteasome inhibition affords dopaminergic neuroprotection. J. Neurosci. Res. 88, 1934-1942 (2010). [PubMed]

75.Lin,P.H., Lan,W.M., & Chau,L.Y. TRC8 suppresses tumorigenesis through targeting heme oxygenase-1 for ubiquitination and degradation. Oncogene 32, 2325-2334 (2013). [PubMed]

76.Hirotsu,S. et al. The crystal structures of the ferric and ferrous forms of the heme complex of HmuO, a heme oxygenase of Corynebacterium diphtheriae. J. Biol. Chem. 279, 11937-11947 (2004). [PubMed]

77.Maines,M.D. Heme oxygenase: function, multiplicity, regulatory mechanisms, and clinical applications. FASEB J. 2, 2557-2568 (1988). [PubMed]

78.Suits,M.D., Jaffer,N., & Jia,Z. Structure of the Escherichia coli O157:H7 heme oxygenase ChuS in complex with heme and enzymatic inactivation by mutation of the heme coordinating residue His-193. J. Biol. Chem. 281, 36776-36782 (2006). [PubMed]

79.Schneider,S. & Paoli,M. Crystallization and preliminary X-ray diffraction analysis of the haem-binding protein HemS from Yersinia enterocolitica. Acta Crystallogr. Sect. F. Struct. Biol. Cryst. Commun. 61, 802-805 (2005). [PubMed]

80.Tripathi,S., O’Neill,M.J., Wilks,A., & Poulos,T.L. Crystal structure of the Pseudomonas aeruginosa cytoplasmic heme binding protein, Apo-PhuS. J. Inorg. Biochem. 128, 131-136 (2013). [PubMed]

81.Block,D.R. et al. Identification of two heme-binding sites in the cytoplasmic heme-trafficking protein PhuS from Pseudomonas aeruginosa and their relevance to function. Biochemistry 46, 14391-14402 (2007). [PubMed]

82.Araujo,J.A., Zhang,M., & Yin,F. Heme oxygenase-1, oxidation, inflammation, and atherosclerosis. Front. Pharmacol. 3, 119 (2012). [PubMed]

83.Suits,M.D. et al. Identification of an Escherichia coli O157:H7 heme oxygenase with tandem functional repeats. Proc. Natl. Acad. Sci. U. S. A 102, 16955-16960 (2005). [PubMed]

84.Ratliff,M., Zhu,W., Deshmukh,R., Wilks,A., & Stojiljkovic,I. Homologues of neisserial heme oxygenase in gram-negative bacteria: degradation of heme by the product of the pigA gene of Pseudomonas aeruginosa. J. Bacteriol. 183, 6394-6403 (2001). [PubMed]

85.Wegele,R., Tasler,R., Zeng,Y., Rivera,M., & Frankenberg-Dinkel,N. The heme oxygenase(s)-phytochrome system of Pseudomonas aeruginosa. J. Biol. Chem. 279, 45791-45802 (2004). [PubMed]

86.Alam,J., Cai,J., & Smith,A. Isolation and characterization of the mouse heme oxygenase-1 gene. Distal 5′ sequences are required for induction by heme or heavy metals. J. Biol. Chem. 269, 1001-1009 (1994). [PubMed]

87.Nambu,S., Matsui,T., Goulding,C.W., Takahashi,S., & Ikeda-Saito,M. A new way to degrade heme: the Mycobacterium tuberculosis enzyme MhuD catalyzes heme degradation without generating CO. J. Biol. Chem. 288, 10101-10109 (2013). [PubMed]

88.Matsui,T. et al. Heme degradation by Staphylococcus aureus IsdG and IsdI liberates formaldehyde rather than carbon monoxide. Biochemistry 52, 3025-3027 (2013). [PubMed]

89.Lyles,K.V. & Eichenbaum,Z. From host heme to iron: the expanding spectrum of heme degrading enzymes used by pathogenic bacteria. Front. Cell Infect. Microbiol. 8, 198 (2018). [PubMed]

90.LaMattina,J.W., Nix,D.B., & Lanzilotta,W.N. Radical new paradigm for heme degradation in Escherichia coli O157:H7. Proc. Natl. Acad. Sci. U. S. A 113, 12138-12143 (2016). [PubMed]

91.Kampinga,H.H. et al. Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 14, 105-111 (2009). [PubMed]

92.Wall,D., Zylicz,M., & Georgopoulos,C. The NH2-terminal 108 amino acids of the Escherichia coli DnaJ protein stimulate the ATPase activity of DnaK and are sufficient for lambda replication. J. Biol. Chem. 269, 5446-5451 (1994). [PubMed]

93.Mayer,M.P., Laufen,T., Paal,K., McCarty,J.S., & Bukau,B. Investigation of the interaction between DnaK and DnaJ by surface plasmon resonance spectroscopy. J. Mol. Biol. 289, 1131-1144 (1999). [PubMed]

94.Kelley,W.L. & Georgopoulos,C. The T/t common exon of simian virus 40, JC, and BK polyomavirus T antigens can functionally replace the J-domain of the Escherichia coli DnaJ molecular chaperone. Proc. Natl. Acad. Sci. U. S. A 94, 3679-3684 (1997). [PubMed]

95.Tsai,J. & Douglas,M.G. A conserved HPD sequence of the J-domain is necessary for YDJ1 stimulation of Hsp70 ATPase activity at a site distinct from substrate binding. J. Biol. Chem. 271, 9347-9354 (1996). [PubMed]

96.Fan,C.Y., Lee,S., & Cyr,D.M. Mechanisms for regulation of Hsp70 function by Hsp40. Cell Stress Chaperones 8, 309-316 (2003). [PubMed]

97.Genevaux,P., Georgopoulos,C., & Kelley,W.L. The Hsp70 chaperone machines of Escherichia coli: a paradigm for the repartition of chaperone functions. Mol. Microbiol. 66, 840-857 (2007). [PubMed]

98.Kampinga,H.H. & Craig,E.A. The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat. Rev. Mol. Cell Biol. 11, 579-592 (2010). [PubMed]

99.Qiu,X.B., Shao,Y.M., Miao,S., & Wang,L. The diversity of the DnaJ/Hsp40 family, the crucial partners for Hsp70 chaperones. Cell Mol. Life Sci. 63, 2560-2570 (2006). [PubMed]

100.Thomas,J.G. & Baneyx,F. Protein folding in the cytoplasm of Escherichia coli: requirements for the DnaK-DnaJ-GrpE and GroEL-GroES molecular chaperone machines. Mol. Microbiol. 21, 1185-1196 (1996). [PubMed]

101.Walsh,P., Bursac,D., Law,Y.C., Cyr,D., & Lithgow,T. The J-protein family: modulating protein assembly, disassembly and translocation. EMBO Rep. 5, 567-571 (2004). [PubMed]

102.Alderson,T.R., Kim,J.H., & Markley,J.L. Dynamical structures of Hsp70 and Hsp70-Hsp40 complexes. Structure 24, 1014-1030 (2016). [PubMed]

103.Dekker,S.L., Kampinga,H.H., & Bergink,S. DNAJs: more than substrate delivery to HSPA. Front. Mol. Biosci. 2, 35 (2015). [PubMed]

104.McMullin,T.W. & Hallberg,R.L. A highly evolutionarily conserved mitochondrial protein is structurally related to the protein encoded by the Escherichia coli groEL gene. Mol. Cell Biol. 8, 371-380 (1988). [PubMed]

105.Brocchieri,L. & Karlin,S. Conservation among HSP60 sequences in relation to structure, function, and evolution. Protein Sci. 9, 476-486 (2000). [PubMed]

106.Merendino,A.M. et al. Hsp60 is actively secreted by human tumor cells. PLoS ONE 5, e9247 (2010). [PubMed]

107.Pockley,A.G. & Multhoff,G. Cell stress proteins in extracellular fluids: friend or foe? Novartis Found. Symp. 291, 86-95 (2008). [PubMed]

108.Pockley,A.G., Muthana,M., & Calderwood,S.K. The dual immunoregulatory roles of stress proteins. Trends Biochem. Sci. 33, 71-79 (2008). [PubMed]

109.Hendrix,R.W. Purification and properties of groE, a host protein involved in bacteriophage assembly. J. Mol. Biol. 129, 375-392 (1979). [PubMed]

110.Czarnecka,A.M., Campanella,C., Zummo,G., & Cappello,F. Heat shock protein 10 and signal transduction: a “capsula eburnea” of carcinogenesis? Cell Stress Chaperones 11, 287-294 (2006). [PubMed]

111.Deocaris,C.C., Kaul,S.C., & Wadhwa,R. On the brotherhood of the mitochondrial chaperones mortalin and heat shock protein 60. Cell Stress Chaperones 11, 116-128 (2006). [PubMed]

112.Sigal,L.H., Williams,S., Soltys,B., & Gupta,R. H9724, a monoclonal antibody to Borrelia burgdorferi‘s flagellin, binds to heat shock protein 60 (HSP60) within live neuroblastoma cells: a potential role for HSP60 in peptide hormone signaling and in an autoimmune pathogenesis of the neuropathy of Lyme disease. Cell Mol. Neurobiol. 21, 477-495 (2001). [PubMed]

113.Chandra,D., Choy,G., & Tang,D.G. Cytosolic accumulation of HSP60 during apoptosis with or without apparent mitochondrial release: evidence that its pro-apoptotic or pro-survival functions involve differential interactions with caspase-3. J. Biol. Chem. 282, 31289-31301 (2007). [PubMed]

114.Gribaldo,S. et al. Discontinuous occurrence of the hsp70 (dnaK) gene among Archaea and sequence features of HSP70 suggest a novel outlook on phylogenies inferred from this protein. J. Bacteriol. 181, 434-443 (1999). [PubMed]

115.Sharma,D. & Masison,D.C. Hsp70 structure, function, regulation and influence on yeast prions. Protein Pept. Lett. 16, 571-581 (2009). [PubMed]

116.Sharma,D. et al. Function of SSA subfamily of Hsp70 within and across species varies widely in complementing Saccharomyces cerevisiae cell growth and prion propagation. PLoS ONE 4, e6644 (2009). [PubMed]

117.Hartl,F.U. Molecular chaperones in cellular protein folding. Nature 381, 571-579 (1996). [PubMed]

118.Asea,A. et al. HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat. Med. 6, 435-442 (2000). [PubMed]

119.Srivastava,P.K. Cancer immunology. Methods 12, 115-116 (1997). [PubMed]

120.Asea,A. et al. Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR) 2 and TLR4. J. Biol. Chem. 277, 15028-15034 (2002). [PubMed]

121.Multhoff,G. et al. A stress-inducible 72-kDa heat-shock protein (HSP72) is expressed on the surface of human tumor cells, but not on normal cells. Int. J. Cancer 61, 272-279 (1995). [PubMed]

122.Radons,J. The human HSP70 family of chaperones: where do we stand? Cell Stress Chaperones 21, 379-404 (2016). [PubMed]

123.Zuiderweg,E.R., Hightower,L.E., & Gestwicki,J.E. The remarkable multivalency of the Hsp70 chaperones. Cell Stress Chaperones 22, 173-189 (2017). [PubMed]

124.Radons,J. The Hsp90 chaperone machinery: an important hub in protein interaction networks. Br. J. Med. Med. Res. 14, 1-32 (2016). [CrossRef]

125.Csermely,P., Schnaider,T., Soti,C., Prohaszka,Z., & Nardai,G. The 90-kDa molecular chaperone family: structure, function, and clinical applications. A comprehensive review. Pharmacol. Ther. 79, 129-168 (1998). [PubMed]

126.Felts,S.J. et al. The hsp90-related protein TRAP1 is a mitochondrial protein with distinct functional properties. J. Biol. Chem. 275, 3305-3312 (2000). [PubMed]

127.Krishna,P. & Gloor,G. The Hsp90 family of proteins in Arabidopsis thaliana. Cell Stress Chaperones 6, 238-246 (2001). [PubMed]

128.Schopf,F.H., Biebl,M.M., & Buchner,J. The HSP90 chaperone machinery. Nat. Rev. Mol. Cell Biol. 18, 345-360 (2017). [PubMed]

129.Hoter,A., El-Sabban,M.E., & Naim,H.Y. The HSP90 family: structure, regulation, function, and implications in health and disease. Int. J. Mol. Sci. 19, (2018).

130.Morrow,G., Hightower,L.E., & Tanguay,R.M. Small heat shock proteins: big folding machines. Cell Stress Chaperones 20, 207-212 (2015). [PubMed]

131.Bakthisaran,R., Tangirala,R., & Rao,C. Small heat shock proteins: role in cellular functions and pathology. Biochim. Biophys. Acta 1854, 291-319 (2015). [PubMed]

132.Verschuure,P., Tatard,C., Boelens,W.C., Grongnet,J.F., & David,J.C. Expression of small heat shock proteins HspB2, HspB8, Hsp20 and cvHsp in different tissues of the perinatal developing pig. Eur. J. Cell Biol. 82, 523-530 (2003). [PubMed]

133.Taylor,R.P. & Benjamin,I.J. Small heat shock proteins: a new classification scheme in mammals. J. Mol. Cell Cardiol. 38, 433-444 (2005). [PubMed]

134.Saito,Y., Yamagishi,N., & Hatayama,T. Nuclear localization mechanism of Hsp105b and its possible function in mammalian cells. J. Biochem. 145, 185-191 (2009). [PubMed]

135.Yasuda,K., Nakai,A., Hatayama,T., & Nagata,K. Cloning and expression of murine high molecular mass heat shock proteins, HSP105. J. Biol. Chem. 270, 29718-29723 (1995). [PubMed]

136.Sciandra,J.J. & Subjeck,J.R. The effects of glucose on protein synthesis and thermosensitivity in Chinese hamster ovary cells. J. Biol. Chem. 258, 12091-12093 (1983). [PubMed]

137.Dragovic,Z., Broadley,S.A., Shomura,Y., Bracher,A., & Hartl,F.U. Molecular chaperones of the Hsp110 family act as nucleotide exchange factors of Hsp70s. EMBO J. 25, 2519-2528 (2006). [PubMed]

138.Raviol,H., Sadlish,H., Rodriguez,F., Mayer,M.P., & Bukau,B. Chaperone network in the yeast cytosol: Hsp110 is revealed as an Hsp70 nucleotide exchange factor. EMBO J. 25, 2510-2518 (2006). [PubMed]

139.Bracher,A. & Verghese,J. The nucleotide exchange factors of Hsp70 molecular chaperones. Front. Mol. Biosci. 2, 10 (2015). [PubMed]

140.Zuo,D., Subjeck,J., & Wang,X.Y. Unfolding the role of large heat shock proteins: new insights and therapeutic implications. Front. Immunol. 7, 75 (2016). [PubMed]

141.Wilks,A. Heme oxygenase: evolution, structure, and mechanism. Antioxid. Redox Signal. 4, 603-614 (2002). [PubMed]

142.Tian,S. et al. Association between a heme oxygenase-2 genetic variant and risk of Parkinson’s disease in Han Chinese. Neurosci. Lett. 642, 119-122 (2017). [PubMed]

143.Ayuso,P. et al. An association study between heme oxygenase-1 genetic variants and Parkinson’s disease. Front. Cell Neurosci. 8, 298 (2014). [PubMed]

144.Ayuso,P. et al. A polymorphism located at an ATG transcription start site of the heme oxygenase-2 gene is associated with classical Parkinson’s disease. Pharmacogenet. Genomics 21, 565-571 (2011). [PubMed]

145.Zhou,H. et al. Genetic polymorphism of heme oxygenase 1 promoter in the occurrence and severity of chronic obstructive pulmonary disease: a meta-analysis. J. Cell Mol. Med. 21, 894-903 (2017). [PubMed]

146.Zhang,M.M. et al. Heme oxygenase-1 gene promoter polymorphisms are associated with coronary heart disease and restenosis after percutaneous coronary intervention: a meta-analysis. Oncotarget 7, 83437-83450 (2016). [PubMed]

147.Martinez-Hernandez,A. et al. Association of HMOX1 and NQO1 polymorphisms with metabolic syndrome components. PLoS ONE 10, e0123313 (2015). [PubMed]

148.Saikawa,Y. et al. Structural evidence of genomic exon-deletion mediated by Alu-Alu recombination in a human case with heme oxygenase-1 deficiency. Hum. Mutat. 16, 178-179 (2000). [PubMed]

149.Yachie,A. et al. Oxidative stress causes enhanced endothelial cell injury in human heme oxygenase-1 deficiency. J. Clin. Invest 103, 129-135 (1999). [PubMed]

150.Muñoz-Sánchez & Chanez-Cardenas,M.E. A review on hemeoxygenase-2: focus on cellular protection and oxygen response. Oxid. Med. Cell Longev. 2014, 604981 (2014). [PubMed]

151.Frankenberg-Dinkel,N. Bacterial heme oxygenases. Antioxid. Redox Signal. 6, 825-834 (2004). [PubMed]

152.Wu,R. et al. Staphylococcus aureus IsdG and IsdI, heme-degrading enzymes with structural similarity to monooxygenases. J. Biol. Chem. 280, 2840-2846 (2005). [PubMed]

153.Stojiljkovic,I. & Hantke,K. Hemin uptake system of Yersinia enterocolitica: similarities with other TonB-dependent systems in gram-negative bacteria. EMBO J. 11, 4359-4367 (1992). [PubMed]

154.Lansky,I.B. et al. The cytoplasmic heme-binding protein (PhuS) from the heme uptake system of Pseudomonas aeruginosa is an intracellular heme-trafficking protein to the delta-regioselective heme oxygenase. J. Biol. Chem. 281, 13652-13662 (2006). [PubMed]

155.Friedman,J., Lad,L., Li,H., Wilks,A., & Poulos,T.L. Structural basis for novel delta-regioselective heme oxygenation in the opportunistic pathogen Pseudomonas aeruginosa. Biochemistry 43, 5239-5245 (2004). [PubMed]

156.Lee,M.J., Schep,D., McLaughlin,B., Kaufmann,M., & Jia,Z. Structural analysis and identification of PhuS as a heme-degrading enzyme from Pseudomonas aeruginosa. J. Mol. Biol. 426, 1936-1946 (2014). [PubMed]

157.Schneider,S., Sharp,K.H., Barker,P.D., & Paoli,M. An induced fit conformational change underlies the binding mechanism of the heme transport proteobacteria-protein HemS. J. Biol. Chem. 281, 32606-32610 (2006). [PubMed]

158.Bhakta,M.N. & Wilks,A. The mechanism of heme transfer from the cytoplasmic heme binding protein PhuS to the delta-regioselective heme oxygenase of Pseudomonas aeruginosa. Biochemistry 45, 11642-11649 (2006). [PubMed]

159.O’Neill,M.J. & Wilks,A. The P. aeruginosa heme binding protein PhuS is a heme oxygenase titratable regulator of heme uptake. ACS Chem. Biol. 8, 1794-1802 (2013). [PubMed]

160.Yamaguchi-Iwai,Y., Ueta,R., Fukunaka,A., & Sasaki,R. Subcellular localization of Aft1 transcription factor responds to iron status in Saccharomyces cerevisiae. J. Biol. Chem. 277, 18914-18918 (2002). [PubMed]

161.Collinson,E.J. et al. The yeast homolog of heme oxygenase-1 affords cellular antioxidant protection via the transcriptional regulation of known antioxidant genes. J. Biol. Chem. 286, 2205-2214 (2011). [PubMed]

162.Pendrak,M.L., Chao,M.P., Yan,S.S., & Roberts,D.D. Heme oxygenase in Candida albicans is regulated by hemoglobin and is necessary for metabolism of exogenous heme and hemoglobin to alpha-biliverdin. J. Biol. Chem. 279, 3426-3433 (2004). [PubMed]

163.Pendrak,M.L., Yan,S.S., & Roberts,D.D. Hemoglobin regulates expression of an activator of mating-type locus alpha genes in Candida albicans. Eukaryot. Cell 3, 764-775 (2004). [PubMed]

164.Pendrak,M.L., Krutzsch,H.C., & Roberts,D.D. Structural requirements for hemoglobin to induce fibronectin receptor expression in Candida albicans. Biochemistry 39, 16110-16118 (2000). [PubMed]

165.Weissman,Z., Shemer,R., & Kornitzer,D. Deletion of the copper transporter CaCCC2 reveals two distinct pathways for iron acquisition in Candida albicans. Mol. Microbiol. 44, 1551-1560 (2002). [PubMed]

166.Mahawar,L. & Shekhawat,G.S. Haem oxygenase: a functionally diverse enzyme of photosynthetic organisms and its role in phytochrome chromophore biosynthesis, cellular signalling and defence mechanisms. Plant Cell Environ. 41, 483-500 (2018). [PubMed]

167.Merchant,S.S. et al. The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318, 245-250 (2007). [PubMed]

168.Urzica,E.I. et al. Systems and trans-system level analysis identifies conserved iron deficiency responses in the plant lineage. Plant Cell 24, 3921-3948 (2012). [PubMed]

169.Rhie,G. & Beale,S.I. Regulation of heme oxygenase activity in Cyanidium caldarium by light, glucose, and phycobilin precursors. J. Biol. Chem. 269, 9620-9626 (1994). [PubMed]

170.Cornejo,J. & Beale,S.I. Algal heme oxygenase from Cyanidium caldarium. Partial purification and fractionation into three required protein components. J. Biol. Chem. 263, 11915-11921 (1988). [PubMed]

171.Reith,M. & Munholland,J. A high-resolution gene map of the chloroplast genome of the red alga Porphyra purpurea. Plant Cell 5, 465-475 (1993). [PubMed]

172.Kaneko,T. et al. Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res. 3, 109-136 (1996). [PubMed]

173.Yoshinaga,T., Sassa,S., & Kappas,A. Purification and properties of bovine spleen heme oxygenase. Amino acid composition and sites of action of inhibitors of heme oxidation. J. Biol. Chem. 257, 7778-7785 (1982). [PubMed]

174.Abraham,N.G., Drummond,G.S., Lutton,J.D., & Kappas,A. The biological significance and physiological role of heme oxygenase. Cell. Physiol. Biochem. 6, 129-168 (1996). [CrossRef]

175.Rotenberg,M.O. & Maines,M.D. Isolation, characterization, and expression in Escherichia coli of a cDNA encoding rat heme oxygenase-2. J. Biol. Chem. 265, 7501-7506 (1990). [PubMed]

176.Cruse,I. & Maines,M.D. Evidence suggesting that the two forms of heme oxygenase are products of different genes. J. Biol. Chem. 263, 3348-3353 (1988). [PubMed]

177.Rahman,M.N., Vlahakis,J.Z., Szarek,W.A., Nakatsu,K., & Jia,Z. X-ray crystal structure of human heme oxygenase-1 in complex with 1-(adamantan-1-yl)-2-(1H-imidazol-1-yl)ethanone: a common binding mode for imidazole-based heme oxygenase-1 inhibitors. J. Med. Chem. 51, 5943-5952 (2008). [PubMed]

178.McCoubrey,W.K., Jr., Huang,T.J., & Maines,M.D. Heme oxygenase-2 is a hemoprotein and binds heme through heme regulatory motifs that are not involved in heme catalysis. J. Biol. Chem. 272, 12568-12574 (1997). [PubMed]

179.Maines,M.D. & Panahian,N. The heme oxygenase system and cellular defense mechanisms. Do HO-1 and HO-2 have different functions? Adv. Exp. Med. Biol. 502, 249-272 (2001). [PubMed]

180.Huang,T.J., McCoubrey,W.K., Jr., & Maines,M.D. Heme oxygenase-2 interaction with metalloporphyrins: function of heme regulatory motifs. Antioxid. Redox Signal. 3, 685-696 (2001). [PubMed]

181.Ding,Y., McCoubrey,W.K., Jr., & Maines,M.D. Interaction of heme oxygenase-2 with nitric oxide donors. Is the oxygenase an intracellular ‘sink’ for NO? Eur. J. Biochem. 264, 854-861 (1999). [PubMed]

182.Yi,L. et al. Heme regulatory motifs in heme oxygenase-2 form a thiol/disulfide redox switch that responds to the cellular redox state. J. Biol. Chem. 284, 20556-20561 (2009). [PubMed]

183.Yi,L. & Ragsdale,S.W. Evidence that the heme regulatory motifs in heme oxygenase-2 serve as a thiol/disulfide redox switch regulating heme binding. J. Biol. Chem. 282, 21056-21067 (2007). [PubMed]

184.Varfaj,F., Lampe,J.N., & Ortiz de Montellano,P.R. Role of cysteine residues in heme binding to human heme oxygenase-2 elucidated by two-dimensional NMR spectroscopy. J. Biol. Chem. 287, 35181-35191 (2012). [PubMed]

185.Gardner,J.D., Yi,L., Ragsdale,S.W., & Brunold,T.C. Spectroscopic insights into axial ligation and active-site H-bonding in substrate-bound human heme oxygenase-2. J. Biol. Inorg. Chem. 15, 1117-1127 (2010). [PubMed]

186.Ishikawa,K., Sato,M., & Yoshida,T. Expression of rat heme oxygenase in Escherichia coli as a catalytically active, full-length form that binds to bacterial membranes. Eur. J. Biochem. 202, 161-165 (1991). [PubMed]

187.Rotenberg,M.O. & Maines,M.D. Characterization of a cDNA-encoding rabbit brain heme oxygenase-2 and identification of a conserved domain among mammalian heme oxygenase isozymes: possible heme-binding site? Arch. Biochem. Biophys. 290, 336-344 (1991). [PubMed]

188.Ishikawa,K. et al. Identification of histidine 45 as the axial heme iron ligand of heme oxygenase-2. J. Biol. Chem. 273, 4317-4322 (1998). [PubMed]

189.McCoubrey,W.K., Jr. & Maines,M.D. Domains of rat heme oxygenase-2: the amino terminus and histidine 151 are required for heme oxidation. Arch. Biochem. Biophys. 302, 402-408 (1993). [PubMed]

190.Wilks,A., Ortiz de Montellano,P.R., Sun,J., & Loehr,T.M. Heme oxygenase (HO-1): His-132 stabilizes a distal water ligand and assists catalysis. Biochemistry 35, 930-936 (1996).

191.Lin,Q.S. et al. Catalytic inactive heme oxygenase-1 protein regulates its own expression in oxidative stress. Free Radic. Biol. Med. 44, 847-855 (2008). [PubMed]

192.Lynes,E.M. et al. Palmitoylated TMX and calnexin target to the mitochondria-associated membrane. EMBO J. 31, 457-470 (2012). [PubMed]

193.Jung,N.H. et al. Evidence for heme oxygenase-1 association with caveolin-1 and -2 in mouse mesangial cells. IUBMB Life 55, 525-532 (2003). [PubMed]

194.Taira,J. et al. Caveolin-1 is a competitive inhibitor of heme oxygenase-1 (HO-1) with heme: identification of a minimum sequence in caveolin-1 for binding to HO-1. Biochemistry 50, 6824-6831 (2011). [PubMed]

195.Cho,C.H., Choi,J.W., Lam,D.W., Kim,K.M., & Yoon,H.S. Plastid genome analysis of three Nemaliophycidae red algal species suggests environmental adaptation for iron limited habitats. PLoS ONE 13, e0196995 (2018). [PubMed]

196.Li Volti G. et al. Potential immunoregulatory role of heme oxygenase-1 in human milk: a combined biochemical and molecular modeling approach. J. Nutr. Biochem. 21, 865-871 (2010). [PubMed]

197.Calderwood,S.K., Gong,J., & Murshid,A. Extracellular HSPs: the complicated roles of extracellular HSPs in immunity. Front. Immunol. 7, 159 (2016). [PubMed]

198.Dudnik,L.B. & Khrapova,N.G. Characterization of bilirubin inhibitory properties in free radical oxidation reactions. Membr. Cell Biol. 12, 233-240 (1998). [PubMed]

199.Stocker,R., Yamamoto,Y., McDonagh,A.F., Glazer,A.N., & Ames,B.N. Bilirubin is an antioxidant of possible physiological importance. Science 235, 1043-1046 (1987). [PubMed]

200.He,M. et al. Heme oxygenase-1-derived bilirubin protects endothelial cells against high glucose-induced damage. Free Radic. Biol. Med. 89, 91-98 (2015). [PubMed]

201.Baranano,D.E., Rao,M., Ferris,C.D., & Snyder,S.H. Biliverdin reductase: a major physiologic cytoprotectant. Proc. Natl. Acad. Sci. U. S. A 99, 16093-16098 (2002). [PubMed]

202.Loboda,A., Jozkowicz,A., & Dulak,J. HO-1/CO system in tumor growth, angiogenesis and metabolism – Targeting HO-1 as an anti-tumor therapy. Vascul. Pharmacol. 74, 11-22 (2015). [PubMed]

203.Loboda,A., Damulewicz,M., Pyza,E., Jozkowicz,A., & Dulak,J. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell Mol. Life Sci. 73, 3221-3247 (2016). [PubMed]

204.Otterbein,L.E., Mantell,L.L., & Choi,A.M. Carbon monoxide provides protection against hyperoxic lung injury. Am. J. Physiol 276, L688-L694 (1999). [PubMed]

205.Otterbein,L.E. et al. MKK3 mitogen-activated protein kinase pathway mediates carbon monoxide-induced protection against oxidant-induced lung injury. Am. J. Pathol. 163, 2555-2563 (2003). [PubMed]

206.Otterbein,L.E. et al. Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nat. Med. 6, 422-428 (2000). [PubMed]

207.Morita,T., Perrella,M.A., Lee,M.E., & Kourembanas,S. Smooth muscle cell-derived carbon monoxide is a regulator of vascular cGMP. Proc. Natl. Acad. Sci. U. S. A 92, 1475-1479 (1995). [PubMed]

208.Dennery,P.A. Signaling function of heme oxygenase proteins. Antioxid. Redox Signal. 20, 1743-1753 (2014). [PubMed]

209.Gozzelino,R., Jeney,V., & Soares,M.P. Mechanisms of cell protection by heme oxygenase-1. Annu. Rev. Pharmacol. Toxicol. 50, 323-354 (2010). [PubMed]

210.Fredenburgh,L.E., Perrella,M.A., & Mitsialis,S.A. The role of heme oxygenase-1 in pulmonary disease. Am. J. Respir. Cell Mol. Biol. 36, 158-165 (2007). [PubMed]

211.Loboda,A. et al. Heme oxygenase-1 and the vascular bed: from molecular mechanisms to therapeutic opportunities. Antioxid. Redox Signal. 10, 1767-1812 (2008). [PubMed]

212.Dulak,J. et al. Heme oxygenase activity modulates vascular endothelial growth factor synthesis in vascular smooth muscle cells. Antioxid. Redox Signal. 4, 229-240 (2002). [PubMed]

213.Jozkowicz,A. et al. Heme oxygenase and angiogenic activity of endothelial cells: stimulation by carbon monoxide and inhibition by tin protoporphyrin-IX. Antioxid. Redox Signal. 5, 155-162 (2003). [PubMed]

214.Morita,T., Mitsialis,S.A., Koike,H., Liu,Y., & Kourembanas,S. Carbon monoxide controls the proliferation of hypoxic vascular smooth muscle cells. J. Biol. Chem. 272, 32804-32809 (1997). [PubMed]

215.Song,R. et al. Carbon monoxide inhibits human airway smooth muscle cell proliferation via mitogen-activated protein kinase pathway. Am. J. Respir. Cell Mol. Biol. 27, 603-610 (2002). [PubMed]

216.Brüne,B. & Ullrich,V. Inhibition of platelet aggregation by carbon monoxide is mediated by activation of guanylate cyclase. Mol. Pharmacol. 32, 497-504 (1987). [PubMed]

217.Fujita,T. et al. Paradoxical rescue from ischemic lung injury by inhaled carbon monoxide driven by derepression of fibrinolysis. Nat. Med. 7, 598-604 (2001). [PubMed]

218.Zhou,Z. et al. Carbon monoxide suppresses bleomycin-induced lung fibrosis. Am. J. Pathol. 166, 27-37 (2005). [PubMed]

219.Baker,H.M., Anderson,B.F., & Baker,E.N. Dealing with iron: common structural principles in proteins that transport iron and heme. Proc. Natl. Acad. Sci. U. S. A 100, 3579-3583 (2003). [PubMed]

220.Balla,G. et al. Ferritin: a cytoprotective antioxidant strategem of endothelium. J. Biol. Chem. 267, 18148-18153 (1992). [PubMed]

221.Weng,Y.H., Yang,G., Weiss,S., & Dennery,P.A. Interaction between heme oxygenase-1 and -2 proteins. J. Biol. Chem. 278, 50999-51005 (2003). [PubMed]

222.Basu,S., Binder,R.J., Ramalingam,T., & Srivastava,P.K. CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity 14, 303-313 (2001). [PubMed]

223.Binder,R.J., Han,D.K., & Srivastava,P.K. CD91: a receptor for heat shock protein gp96. Nat. Immunol. 1, 151-155 (2000). [PubMed]

224.Vanella,L. et al. Heme oxygenase-2/adiponectin protein-protein interaction in metabolic syndrome. Biochem. Biophys. Res. Commun. 432, 606-611 (2013). [PubMed]

225.Wang,Z.V. et al. Secretion of the adipocyte-specific secretory protein adiponectin critically depends on thiol-mediated protein retention. Mol. Cell. Biol. 27, 3716-3731 (2007). [PubMed]

226.Spencer,A.L., Bagai,I., Becker,D.F., Zuiderweg,E.R., & Ragsdale,S.W. Protein/protein interactions in the mammalian heme degradation pathway: heme oxygenase-2, cytochrome P450 reductase, and biliverdin reductase. J. Biol. Chem. 289, 29836-29858 (2014). [PubMed]

227.Williams,S.E. et al. Hemoxygenase-2 is an oxygen sensor for a calcium-sensitive potassium channel. Science 306, 2093-2097 (2004). [PubMed]

228.Suttner,D.M. et al. Protective effects of transient HO-1 overexpression on susceptibility to oxygen toxicity in lung cells. Am. J. Physiol 276, L443-L451 (1999). [PubMed]

229.Alam,J. & Den,Z. Distal AP-1 binding sites mediate basal level enhancement and TPA induction of the mouse heme oxygenase-1 gene. J. Biol. Chem. 267, 21894-21900 (1992). [PubMed]

230.Lavrovsky,Y., Schwartzman,M.L., Levere,R.D., Kappas,A., & Abraham,N.G. Identification of binding sites for transcription factors NF-kB and AP-2 in the promoter region of the human heme oxygenase 1 gene. Proc. Natl. Acad. Sci. U. S. A 91, 5987-5991 (1994). [PubMed]

231.Lavrovsky,Y., Schwartzman,M.L., & Abraham,N.G. Novel regulatory sites of the human heme oxygenase-1 promoter region. Biochem. Biophys. Res. Commun. 196, 336-341 (1993). [PubMed]

232.Wegiel,B. et al. Carbon monoxide expedites metabolic exhaustion to inhibit tumor growth. Cancer Res. 73, 7009-7021 (2013). [PubMed]

233.Tibullo,D. et al. Nuclear translocation of heme oxygenase-1 confers resistance to imatinib in chronic myeloid leukemia cells. Curr. Pharm. Des. 19, 2765-2770 (2013). [PubMed]

234.Tibullo,D. et al. Heme oxygenase-1 nuclear translocation regulates bortezomibinduced cytotoxicity and mediates genomic instability in myeloma cells. Oncotarget 7, 28868-28880 (2016). [PubMed]

235.Hsu,F.F. et al. Signal peptide peptidase-mediated nuclear localization of heme oxygenase-1 promotes cancer cell proliferation and invasion independent of its enzymatic activity. Oncogene 34, 2360-2370 (2015). [PubMed]

236.Bindu,S. et al. Translocation of heme oxygenase-1 to mitochondria is a novel cytoprotective mechanism against non-steroidal anti-inflammatory drug-induced mitochondrial oxidative stress, apoptosis, and gastric mucosal injury. J. Biol. Chem. 286, 39387-39402 (2011). [PubMed]

237.Bolisetty,S. et al. Mitochondria-targeted heme oxygenase-1 decreases oxidative stress in renal epithelial cells. Am. J. Physiol. Renal Physiol. 305, F255-F264 (2013). [PubMed]

238.Bansal,S., Biswas,G., & Avadhani,N.G. Mitochondria-targeted heme oxygenase-1 induces oxidative stress and mitochondrial dysfunction in macrophages, kidney fibroblasts and in chronic alcohol hepatotoxicity. Redox Biol. 2, 273-283 (2014). [PubMed]

239.Wang,X.M., Kim,H.P., Nakahira,K., Ryter,S.W., & Choi,A.M. The heme oxygenase-1/carbon monoxide pathway suppresses TLR4 signaling by regulating the interaction of TLR4 with caveolin-1. J. Immunol. 182, 3809-3818 (2009). [PubMed]

240.Mueller,C. et al. The heme degradation pathway is a promising serum biomarker source for the early detection of Alzheimer’s disease. J. Alzheimers Dis. 19, 1081-1091 (2010). [PubMed]

241.Mateo,I. et al. Serum heme oxygenase-1 levels are increased in Parkinson’s disease but not in Alzheimer’s disease. Acta Neurol. Scand. 121, 136-138 (2010). [PubMed]

242.Siren,J. et al. Plasma heme oxygenase-1 in patients resuscitated from out-of-hospital cardiac arrest. Shock 45, 320-325 (2016). [PubMed]

243.Zager,R.A., Johnson,A.C., & Becker,K. Plasma and urinary heme oxygenase-1 in AKI. J. Am. Soc. Nephrol. 23, 1048-1057 (2012). [PubMed]

244.Murohashi,K. et al. Clinical significance of serum hemeoxygenase-1 as a new biomarker for the patients with interstitial pneumonia. Can. Respir. J. 2018, 7260178 (2018). [PubMed]

245.Sato,T. et al. Heme oxygenase-1, a potential biomarker of chronic silicosis, attenuates silica-induced lung injury. Am. J. Respir. Crit Care Med. 174, 906-914 (2006). [PubMed]

246.Sato,T. et al. Serum heme oxygenase-1 as a marker of lung function decline in patients with chronic silicosis. J. Occup. Environ. Med. 54, 1461-1466 (2012). [PubMed]

247.Hara,Y. et al. Clinico-pathological analysis referring hemeoxygenase-1 in acute fibrinous and organizing pneumonia patients. Respir. Med. Case Rep. 14, 53-56 (2015). [PubMed]

248.Hara,Y. et al. ELISA development for serum hemeoxygenase-1 and its application to patients with acute respiratory distress syndrome. Can. Respir. J. 2018, 9627420 (2018). [PubMed]

249.Kirino,Y. et al. Beneficial use of serum ferritin and heme oxygenase-1 as biomarkers in adult-onset Still’s disease: a multicenter retrospective study. Mod. Rheumatol. 28, 858-864 (2018). [PubMed]

250.Rizzo,M. et al. Liraglutide reduces oxidative stress and restores heme oxygenase-1 and ghrelin levels in patients with type 2 diabetes: a prospective pilot study. J. Clin. Endocrinol. Metab. 100, 603-606 (2015). [PubMed]

251.Qiu,C., Hevner,K., Enquobahrie,D.A., & Williams,M.A. Maternal serum heme-oxygenase-1 (HO-1) concentrations in early pregnancy and subsequent risk of gestational diabetes mellitus. PLoS ONE 7, e48060 (2012). [PubMed]

252.Tang,D. et al. Association of the microsatellite (GT)n repeat polymorphisms of the HO-1 gene promoter and corresponding serum levels with the risk of laryngeal squamous cell carcinoma. Acta Otolaryngol. 136, 806-811 (2016). [PubMed]

253.Shamovsky,I. & Nudler,E. New insights into the mechanism of heat shock response activation. Cell. Mol. Life Sci. 65, 855-861 (2008). [PubMed]

254.Pirkkala,L., Nykanen,P., & Sistonen,L. Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. FASEB J. 15, 1118-1131 (2001). [PubMed]

255.Åkerfelt,M., Morimoto,R.I., & Sistonen,L. Heat shock factors: integrators of cell stress, development and lifespan. Nat. Rev. Mol. Cell Biol. 11, 545-555 (2010). [PubMed]

256.Mason,P.B.Jr. & Lis,J.T. Cooperative and competitive protein interactions at the hsp70 promoter. J. Biol. Chem. 272, 33227-33233 (1997). [PubMed]

257.Westwood,J.T., Clos,J., & Wu,C. Stress-induced oligomerization and chromosomal relocalization of heat-shock factor. Nature 353, 822-827 (1991). [PubMed]

258.Alam,J. & Cook,J.L. How many transcription factors does it take to turn on the heme oxygenase-1 gene? Am. J. Respir. Cell Mol. Biol. 36, 166-174 (2007). [PubMed]

259.Satoh,T. et al. Dual neuroprotective pathways of a pro-electrophilic compound via HSF-1-activated heat-shock proteins and Nrf2-activated phase 2 antioxidant response enzymes. J. Neurochem. 119, 569-578 (2011). [PubMed]

260.Waza,A.A., Hamid,Z., Ali,S., Bhat,S.A., & Bhat,M.A. A review on heme oxygenase-1 induction: is it a necessary evil. Inflamm. Res. 67, 579-588 (2018). [PubMed]

261.Guzhova,I.V., Darieva,Z.A., Melo,A.R., & Margulis,B.A. Major stress protein Hsp70 interacts with NF-kB regulatory complex in human T-lymphoma cells. Cell Stress Chaperones 2, 132-139 (1997). [PubMed]

262.Cappello,F. et al. Convergent sets of data from in vivo and in vitro methods point to an active role of Hsp60 in chronic obstructive pulmonary disease pathogenesis. PLoS ONE 6, e28200 (2011). [PubMed]

263.Wang,Y., Chen,L., Hagiwara,N., & Knowlton,A.A. Regulation of heat shock protein 60 and 72 expression in the failing heart. J. Mol. Cell. Cardiol. 48, 360-366 (2010). [PubMed]

264.Lee,P.J. et al. Hypoxia-inducible factor-1 mediates transcriptional activation of the heme oxygenase-1 gene in response to hypoxia. J. Biol. Chem. 272, 5375-5381 (1997). [PubMed]

265.Takeda,K., Ishizawa,S., Sato,M., Yoshida,T., & Shibahara,S. Identification of a cis-acting element that is responsible for cadmium-mediated induction of the human heme oxygenase gene. J. Biol. Chem. 269, 22858-22867 (1994). [PubMed]

266.Alam,J. et al. Nrf2, a Cap’n’Collar transcription factor, regulates induction of the heme oxygenase-1 gene. J. Biol. Chem. 274, 26071-26078 (1999). [PubMed]

267.Itoh,K. et al. Keap1 regulates both cytoplasmic-nuclear shuttling and degradation of Nrf2 in response to electrophiles. Genes Cells 8, 379-391 (2003). [PubMed]

268.Hirotsu,Y. et al. Nrf2-MafG heterodimers contribute globally to antioxidant and metabolic networks. Nucleic Acids Res. 40, 10228-10239 (2012). [PubMed]

269.Ogawa,K. et al. Heme mediates derepression of Maf recognition element through direct binding to transcription repressor Bach1. EMBO J. 20, 2835-2843 (2001). [PubMed]

270.Miyazaki,T. et al. Expression of heme oxygenase-1 in human leukemic cells and its regulation by transcriptional repressor Bach1. Cancer Sci. 101, 1409-1416 (2010). [PubMed]

271.Dorresteijn,M.J. et al. Cell-type-specific downregulation of heme oxygenase-1 by lipopolysaccharide via Bach1 in primary human mononuclear cells. Free Radic. Biol. Med. 78, 224-232 (2015). [PubMed]

272.Spizzo,R., Nicoloso,M.S., Croce,C.M., & Calin,G.A. SnapShot: microRNAs in cancer. Cell 137, 586-586.e1 (2009). [PubMed]

273.Visone,R. & Croce,C.M. MiRNAs and cancer. Am. J. Pathol. 174, 1131-1138 (2009). [PubMed]

274.Radons,J. Inflammatory stress and sarcomagenesis: a vicious interplay. Cell Stress Chaperones 19, 1-13 (2014). [PubMed]

275.Fiedler,J. et al. Functional microRNA library screening identifies the hypoxamir miR-24 as a potent regulator of smooth muscle cell proliferation and vascularization. Antioxid. Redox Signal. 21, 1167-1176 (2014). [PubMed]

276.Fan,W.X., Wen,X.L., Xiao,H., Yang,Q.P., & Liang,Z. MicroRNA-29a enhances autophagy in podocytes as a protective mechanism against high glucose-induced apoptosis by targeting heme oxygenase-1. Eur. Rev. Med. Pharmacol. Sci. 22, 8909-8917 (2018). [PubMed]

277.Zhang,J. et al. Micro-RNA-155-mediated control of heme oxygenase 1 (HO-1) is required for restoring adaptively tolerant CD4+ T-cell function in rodents. Eur. J. Immunol. 45, 829-842 (2015). [PubMed]

278.Gao,C., Peng,F.H., & Peng,L.K. MiR-200c sensitizes clear-cell renal cell carcinoma cells to sorafenib and imatinib by targeting heme oxygenase-1. Neoplasma 61, 680-689 (2014). [PubMed]

279.Li,X.Y., Zhang,K., Jiang,Z.Y., & Cai,L.H. MiR-204/miR-211 downregulation contributes to candidemia-induced kidney injuries via derepression of Hmx1 expression. Life Sci. 102, 139-144 (2014). [PubMed]

280.Beckman,J.D. et al. Regulation of heme oxygenase-1 protein expression by miR-377 in combination with miR-217. J. Biol. Chem. 286, 3194-3202 (2011). [PubMed]

281.Hou,W., Tian,Q., Zheng,J., & Bonkovsky,H.L. MicroRNA-196 represses Bach1 protein and hepatitis C virus gene expression in human hepatoma cells expressing hepatitis C viral proteins. Hepatology 51, 1494-1504 (2010). [PubMed]

282.Kim,J.H. et al. Hypoxia-responsive microRNA-101 promotes angiogenesis via heme oxygenase-1/vascular endothelial growth factor axis by targeting cullin 3. Antioxid. Redox Signal. 21, 2469-2482 (2014). [PubMed]

283.Narasimhan,M. et al. Identification of novel microRNAs in post-transcriptional control of Nrf2 expression and redox homeostasis in neuronal, SH-SY5Y cells. PLoS ONE 7, e51111 (2012). [PubMed]

284.Yang,M., Yao,Y., Eades,G., Zhang,Y., & Zhou,Q. MiR-28 regulates Nrf2 expression through a Keap1-independent mechanism. Breast Cancer Res. Treat. 129, 983-991 (2011). [PubMed]

285.Stachurska,A. et al. Cross-talk between microRNAs, nuclear factor E2-related factor 2, and heme oxygenase-1 in ochratoxin A-induced toxic effects in renal proximal tubular epithelial cells. Mol. Nutr. Food Res. 57, 504-515 (2013). [PubMed]

286.Eades,G., Yang,M., Yao,Y., Zhang,Y., & Zhou,Q. miR-200a regulates Nrf2 activation by targeting Keap1 mRNA in breast cancer cells. J. Biol. Chem. 286, 40725-40733 (2011). [PubMed]

287.Kozakowska,M. et al. Heme oxygenase-1 inhibits myoblast differentiation by targeting myomirs. Antioxid. Redox Signal. 16, 113-127 (2012). [PubMed]

288.Kramer,M. et al. Alternative 5′ untranslated regions are involved in expression regulation of human heme oxygenase-1. PLoS ONE 8, e77224 (2013). [PubMed]

289.Exner,M., Minar,E., Wagner,O., & Schillinger,M. The role of heme oxygenase-1 promoter polymorphisms in human disease. Free Radic. Biol. Med. 37, 1097-1104 (2004). [PubMed]

290.Dowal,L., Yang,W., Freeman,M.R., Steen,H., & Flaumenhaft,R. Proteomic analysis of palmitoylated platelet proteins. Blood 118, e62-e73 (2011). [PubMed]

291.Weng,P. et al. Caveolin-1 scaffolding domain peptides enhance anti-inflammatory effect of heme oxygenase-1 through interrupting its interact with caveolin-1. Oncotarget 8, 40104-40114 (2017). [PubMed]

292.Higashimoto,Y. et al. Involvement of NADPH in the interaction between heme oxygenase-1 and cytochrome P450 reductase. J. Biol. Chem. 280, 729-737 (2005). [PubMed]

293.Matsui,T., Unno,M., & Ikeda-Saito,M. Heme oxygenase reveals its strategy for catalyzing three successive oxygenation reactions. Acc. Chem. Res. 43, 240-247 (2010). [PubMed]

294.Yoshida,T., Noguchi,M., & Kikuchi,G. Oxygenated form of heme · heme oxygenase complex and requirement for second electron to initiate heme degradation from the oxygenated complex. J. Biol. Chem. 255, 4418-4420 (1980). [PubMed]

295.Wilks,A. & Ortiz de Montellano,P.R. Rat liver heme oxygenase. High level expression of a truncated soluble form and nature of the meso-hydroxylating species. J. Biol. Chem. 268, 22357-22362 (1993). [PubMed]

296.Wilks,A., Torpey,J., & Ortiz de Montellano,P.R. Heme oxygenase (HO-1). Evidence for electrophilic oxygen addition to the porphyrin ring in the formation of alpha-meso-hydroxyheme. J. Biol. Chem. 269, 29553-29556 (1994). [PubMed]

297.Tenhunen,R. et al. Enzymatic degradation of heme. Oxygenative cleavage requiring cytochrome P-450. Biochemistry 11, 1716-1720 (1972). [PubMed]

298.Yoshida,T., Noguchi,M., & Kikuchi,G. The step of carbon monoxide liberation in the sequence of heme degradation catalyzed by the reconstituted microsomal heme oxygenase system. J. Biol. Chem. 257, 9345-9348 (1982). [PubMed]

299.Yoshida,T. & Noguchi,M. Features of intermediary steps around the 688-nm substance in the heme oxygenase reaction. J. Biochem. 96, 563-570 (1984). [PubMed]

300.Yoshida,T., Noguchi,M., & Kikuchi,G. A new intermediate of heme degradation catalyzed by the heme oxygenase system. J. Biochem. 88, 557-563 (1980). [PubMed]

301.Sano,S., Sano,T., Morishima,I., Shiro,Y., & Maeda,Y. On the mechanism of the chemical and enzymic oxygenations of a-oxyprotohemin IX to Fe.biliverdin IXa. Proc. Natl. Acad. Sci. U. S. A 83, 531-535 (1986). [PubMed]

302.Matera,K.M. et al. Oxygen and one reducing equivalent are both required for the conversion of a-hydroxyhemin to verdoheme in heme oxygenase. J. Biol. Chem. 271, 6618-6624 (1996). [PubMed]

303.Liu,Y., Moenne-Loccoz,P., Loehr,T.M., & Ortiz de Montellano,P.R. Heme oxygenase-1, intermediates in verdoheme formation and the requirement for reduction equivalents. J. Biol. Chem. 272, 6909-6917 (1997). [PubMed]

304.Yoshida,T. & Migita,C.T. Mechanism of heme degradation by heme oxygenase. J. Inorg. Biochem. 82, 33-41 (2000). [PubMed]

305.Yoshinaga,T., Sassa,S., & Kappas,A. A comparative study of heme degradation by NADPH-cytochrome c reductase alone and by the complete heme oxygenase system. Distinctive aspects of heme degradation by NADPH-cytochrome c reductase. J. Biol. Chem. 257, 7794-7802 (1982). [PubMed]

306.Kutty,R.K. & Maines,M.D. Oxidation of heme c derivatives by purified heme oxygenase. Evidence for the presence of one molecular species of heme oxygenase in the rat liver. J. Biol. Chem. 257, 9944-9952 (1982). [PubMed]

307.Cvorovic,J. & Passamonti,S. Membrane transporters for bilirubin and its conjugates: a systematic review. Front. Pharmacol. 8, 887 (2017). [PubMed]

308.Dixon,S.J. et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149, 1060-1072 (2012). [PubMed]

309.Dixon,S.J. Ferroptosis: bug or feature? Immunol. Rev. 277, 150-157 (2017). [PubMed]

310.Cao,J.Y. & Dixon,S.J. Mechanisms of ferroptosis. Cell. Mol. Life Sci. 73, 2195-2209 (2016). [PubMed]

311.Chiang,S.K., Chen,S.E., & Chang,L.C. A dual role of heme oxygenase-1 in cancer cells. Int. J. Mol. Sci. 20, (2018). [PubMed]

312.Hassannia,B. et al. Nano-targeted induction of dual ferroptotic mechanisms eradicates high-risk neuroblastoma. J. Clin. Invest 128, 3341-3355 (2018). [PubMed]

313.Chang,L.C. et al. Heme oxygenase-1 mediates BAY 11-7085 induced ferroptosis. Cancer Lett. 416, 124-137 (2018). [PubMed]

314.Kwon,M.Y., Park,E., Lee,S.J., & Chung,S.W. Heme oxygenase-1 accelerates erastin-induced ferroptotic cell death. Oncotarget 6, 24393-24403 (2015). [PubMed]

315.Gorrini,C., Harris,I.S., & Mak,T.W. Modulation of oxidative stress as an anticancer strategy. Nat. Rev. Drug Discov. 12, 931-947 (2013). [PubMed]

316.Piloni,N.E., Fermandez,V., Videla,L.A., & Puntarulo,S. Acute iron overload and oxidative stress in brain. Toxicology 314, 174-182 (2013). [PubMed]

317.NaveenKumar,S.K. et al. The role of reactive oxygen species and ferroptosis in heme-mediated activation of human platelets. ACS Chem. Biol. 13, 1996-2002 (2018). [PubMed]

318.Sui,M., Jiang,X., Chen,J., Yang,H., & Zhu,Y. Magnesium isoglycyrrhizinate ameliorates liver fibrosis and hepatic stellate cell activation by regulating ferroptosis signaling pathway. Biomed. Pharmacother. 106, 125-133 (2018). [PubMed]

319.Sun,X. et al. Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology 63, 173-184 (2016). [PubMed]

320.Sui,X. et al. RSL3 drives ferroptosis through GPX4 inactivation and ROS production in colorectal cancer. Front. Pharmacol. 9, 1371 (2018). [PubMed]

321.Shin,D., Kim,E.H., Lee,J., & Roh,J.L. Nrf2 inhibition reverses resistance to GPX4 inhibitor-induced ferroptosis in head and neck cancer. Free Radic. Biol. Med. 129, 454-462 (2018). [PubMed]

322.Papanikolaou,G. & Pantopoulos,K. Iron metabolism and toxicity. Toxicol. Appl. Pharmacol. 202, 199-211 (2005). [PubMed]

323.Xie,Y. et al. Ferroptosis: process and function. Cell Death Differ. 23, 369-379 (2016). [PubMed]

324.Stockwell,B.R. et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171, 273-285 (2017). [PubMed]

325.Yang,W.S. et al. Regulation of ferroptotic cancer cell death by GPX4. Cell 156, 317-331 (2014). [PubMed]

326.Lo,M., Ling,V., Wang,Y.Z., & Gout,P.W. The xc cystine/glutamate antiporter: a mediator of pancreatic cancer growth with a role in drug resistance. Br. J. Cancer 99, 464-472 (2008). [PubMed]

327.Roh,J.L., Kim,E.H., Jang,H., & Shin,D. Nrf2 inhibition reverses the resistance of cisplatin-resistant head and neck cancer cells to artesunate-induced ferroptosis. Redox Biol. 11, 254-262 (2017). [PubMed]

328.Lee,I.C. & Choi,B.Y. Withaferin-A – a natural anticancer agent with pleitropic mechanisms of action. Int. J. Mol. Sci. 17, 290 (2016). [PubMed]

329.Verma,A., Hirsch,D.J., Glatt,C.E., Ronnett,G.V., & Snyder,S.H. Carbon monoxide: a putative neural messenger. Science 259, 381-384 (1993). [PubMed]

330.Durante,W., Johnson,F.K., & Johnson,R.A. Role of carbon monoxide in cardiovascular function. J. Cell Mol. Med. 10, 672-686 (2006). [PubMed]

331.Thorup,C., Jones,C.L., Gross,S.S., Moore,L.C., & Goligorsky,M.S. Carbon monoxide induces vasodilation and nitric oxide release but suppresses endothelial NOS. Am. J. Physiol. 277, F882-F889 (1999). [PubMed]

332.Peers,C. Ion channels as target effectors for carbon monoxide. Exp. Physiol. 96, 836-839 (2011). [PubMed]

333.Wilkinson,W.J. & Kemp,P.J. Carbon monoxide: an emerging regulator of ion channels. J. Physiol. 589, 3055-3062 (2011). [PubMed]

334.White,K.A. & Marletta,M.A. Nitric oxide synthase is a cytochrome P-450 type hemoprotein. Biochemistry 31, 6627-6631 (1992). [PubMed]

335.Sarady,J.K. et al. Carbon monoxide protection against endotoxic shock involves reciprocal effects on iNOS in the lung and liver. FASEB J. 18, 854-856 (2004). [PubMed]

336.Lim,I. et al. Carbon monoxide activates human intestinal smooth muscle L-type Ca2+ channels through a nitric oxide-dependent mechanism. Am. J. Physiol. Gastrointest. Liver Physiol. 288, G7-14 (2005). [PubMed]

337.Lee,S.J. et al. Carbon monoxide activates autophagy via mitochondrial reactive oxygen species formation. Am. J. Respir. Cell Mol. Biol. 45, 867-873 (2011). [PubMed]

338.Peers,C. & Steele,D.S. Carbon monoxide: a vital signalling molecule and potent toxin in the myocardium. J. Mol. Cell Cardiol. 52, 359-365 (2012). [PubMed]

339.Zuckerbraun,B.S. et al. Carbon monoxide signals via inhibition of cytochrome c oxidase and generation of mitochondrial reactive oxygen species. FASEB J. 21, 1099-1106 (2007). [PubMed]

340.Chin,B.Y. et al. Hypoxia-inducible factor 1a stabilization by carbon monoxide results in cytoprotective preconditioning. Proc. Natl. Acad. Sci. U. S. A 104, 5109-5114 (2007). [PubMed]

341.Nakahira,K. et al. Carbon monoxide differentially inhibits TLR signaling pathways by regulating ROS-induced trafficking of TLRs to lipid rafts. J. Exp. Med. 203, 2377-2389 (2006). [PubMed]

342.Kim,H.P. et al. Heat shock protein-70 mediates the cytoprotective effect of carbon monoxide: involvement of p38b MAPK and heat shock factor-1. J. Immunol. 175, 2622-2629 (2005). [PubMed]

343.Bilban,M. et al. Carbon monoxide orchestrates a protective response through PPARg. Immunity 24, 601-610 (2006). [PubMed]

344.Xie,Y., Chen,C., Stevenson,M.A., Auron,P.E., & Calderwood,S.K. Heat shock factor 1 represses transcription of the IL-1b gene through physical interaction with the nuclear factor of interleukin 6. J. Biol. Chem. 277, 11802-11810 (2002). [PubMed]

345.Singh,I.S., He,J.R., Calderwood,S., & Hasday,J.D. A high affinity HSF-1 binding site in the 5′-untranslated region of the murine tumor necrosis factor-a gene is a transcriptional repressor. J. Biol. Chem. 277, 4981-4988 (2002). [PubMed]

346.Kuruvilla,A.P. et al. Protective effect of transforming growth factor b1 on experimental autoimmune diseases in mice. Proc. Natl. Acad. Sci. U. S. A 88, 2918-2921 (1991). [PubMed]

347.Chin,B.Y., Petrache,I., Choi,A.M., & Choi,M.E. Transforming growth factor b1 rescues serum deprivation-induced apoptosis via the mitogen-activated protein kinase (MAPK) pathway in macrophages. J. Biol. Chem. 274, 11362-11368 (1999). [PubMed]

348.Biswas,S., Criswell,T.L., Wang,S.E., & Arteaga,C.L. Inhibition of transforming growth factor-b signaling in human cancer: targeting a tumor suppressor network as a therapeutic strategy. Clin. Cancer Res. 12, 4142-4146 (2006). [PubMed]

349.Jung,S.S. et al. Carbon monoxide negatively regulates NLRP3 inflammasome activation in macrophages. Am. J. Physiol Lung Cell Mol. Physiol 308, L1058-L1067 (2015). [PubMed]

350.Brouard,S. et al. Carbon monoxide generated by heme oxygenase 1 suppresses endothelial cell apoptosis. J. Exp. Med. 192, 1015-1026 (2000). [PubMed]

351.Otterbein,L.E. et al. Carbon monoxide suppresses arteriosclerotic lesions associated with chronic graft rejection and with balloon injury. Nat. Med. 9, 183-190 (2003). [PubMed]

352.Brouard,S. et al. Heme oxygenase-1-derived carbon monoxide requires the activation of transcription factor NF-kB to protect endothelial cells from tumor necrosis factor-a-mediated apoptosis. J. Biol. Chem. 277, 17950-17961 (2002). [PubMed]

353.Zhang,X. et al. Carbon monoxide modulates Fas/Fas ligand, caspases, and Bcl-2 family proteins via the p38a mitogen-activated protein kinase pathway during ischemia-reperfusion lung injury. J. Biol. Chem. 278, 22061-22070 (2003). [PubMed]

354.Wang,X. et al. Carbon monoxide inhibits Fas activating antibody-induced apoptosis in endothelial cells. Med. Gas Res. 1, 8 (2011). [PubMed]

355.Jäättelä,M., Wissing,D., Kokholm,K., Kallunki,T., & Egeblad,M. Hsp70 exerts its anti-apoptotic function downstream of caspase-3-like proteases. EMBO J. 17, 6124-6134 (1998). [PubMed]

356.Jäättelä,M., Wissing,D., Bauer,P.A., & Li,G.C. Major heat shock protein hsp70 protects tumor cells from tumor necrosis factor cytotoxicity. EMBO J. 11, 3507-3512 (1992). [PubMed]

357.Arya,R., Mallik,M., & Lakhotia,S.C. Heat shock genes – integrating cell survival and death. J. Biosci. 32, 595-610 (2007). [PubMed]

358.Zhang,X., Shan,P., Alam,J., Fu,X.Y., & Lee,P.J. Carbon monoxide differentially modulates STAT1 and STAT3 and inhibits apoptosis via a phosphatidylinositol 3-kinase/Akt and p38 kinase-dependent STAT3 pathway during anoxia-reoxygenation injury. J. Biol. Chem. 280, 8714-8721 (2005). [PubMed]

359.Morse,D. et al. Suppression of inflammatory cytokine production by carbon monoxide involves the JNK pathway and AP-1. J. Biol. Chem. 278, 36993-36998 (2003). [PubMed]

360.Basuroy,S., Tcheranova,D., Bhattacharya,S., Leffler,C.W., & Parfenova,H. Nox4 NADPH oxidase-derived reactive oxygen species, via endogenous carbon monoxide, promote survival of brain endothelial cells during TNF-a-induced apoptosis. Am. J. Physiol Cell Physiol 300, C256-C265 (2011). [PubMed]

361.Song,R. et al. Regulation of IL-1b-induced GM-CSF production in human airway smooth muscle cells by carbon monoxide. Am. J. Physiol. Lung Cell. Mol. Physiol. 284, L50-L56 (2003). [PubMed]

362.Park,S.J. et al. Heme oxygenase-1/carbon monoxide axis suppresses transforming growth factor-b1-induced growth inhibition by increasing ERK1/2-mediated phosphorylation of Smad3 at Thr-179 in human hepatocellular carcinoma cell lines. Biochem. Biophys. Res. Commun. 498, 609-615 (2018). [PubMed]

363.Li Volti,G. et al. The heme oxygenase system in hematological malignancies. Antioxid. Redox Signal. 27, 363-377 (2017). [PubMed]

364.Nitti,M. et al. HO-1 induction in cancer progression: a matter of cell adaptation. Antioxidants (Basel) 6, (2017). [PubMed]

365.Hjortso,M.D. & Andersen,M.H. The expression, function and targeting of haem oxygenase-1 in cancer. Curr. Cancer Drug Targets 14, 337-347 (2014). [PubMed]

366.Nowis,D. et al. Heme oxygenase-1 protects tumor cells against photodynamic therapy-mediated cytotoxicity. Oncogene 25, 3365-3374 (2006). [PubMed]

367.Kongpetch,S. et al. Crucial role of heme oxygenase-1 on the sensitivity of cholangiocarcinoma cells to chemotherapeutic agents. PLoS ONE 7, e34994 (2012). [PubMed]

368.Was,H., Dulak,J., & Jozkowicz,A. Heme oxygenase-1 in tumor biology and therapy. Curr. Drug Targets 11, 1551-1570 (2010). [PubMed]

369.Dey,S. et al. ATF4-dependent induction of heme oxygenase 1 prevents anoikis and promotes metastasis. J. Clin. Invest 125, 2592-2608 (2015). [PubMed]

370.Chang,Y.J., Chen,W.Y., Huang,C.Y., Liu,H.H., & Wei,P.L. Glucose-regulated protein 78 (GRP78) regulates colon cancer metastasis through EMT biomarkers and the NRF-2/HO-1 pathway. Tumour Biol. 36, 1859-1869 (2015). [PubMed]

371.Zhao,Z., Zhao,J., Xue,J., Zhao,X., & Liu,P. Autophagy inhibition promotes epithelial-mesenchymal transition through ROS/HO-1 pathway in ovarian cancer cells. Am. J. Cancer Res. 6, 2162-2177 (2016). [PubMed]

372.Tsai,J.R. et al. High expression of heme oxygenase-1 is associated with tumor invasiveness and poor clinical outcome in non-small cell lung cancer patients. Cell Oncol. (Dordr. ) 35, 461-471 (2012). [PubMed]

373.Miyata,Y., Kanda,S., Mitsunari,K., Asai,A., & Sakai,H. Heme oxygenase-1 expression is associated with tumor aggressiveness and outcomes in patients with bladder cancer: a correlation with smoking intensity. Transl. Res. 164, 468-476 (2014). [PubMed]

374.Wang,J. et al. Correlation of Nrf2, HO-1, and MRP3 in gallbladder cancer and their relationships to clinicopathologic features and survival. J. Surg. Res. 164, e99-105 (2010). [PubMed]

375.Gandini,N.A. et al. Heme oxygenase-1 expression in human gliomas and its correlation with poor prognosis in patients with astrocytoma. Tumour Biol. 35, 2803-2815 (2014). [PubMed]

376.Fest,S. et al. Targeting of heme oxygenase-1 as a novel immune regulator of neuroblastoma. Int. J. Cancer 138, 2030-2042 (2016). [PubMed]

377.Kongpetch,S. et al. Haem oxygenase 1 expression is associated with prognosis in cholangiocarcinoma patients and with drug sensitivity in xenografted mice. Cell Prolif. 49, 90-101 (2016). [PubMed]

378.Wei,S. et al. Over-expression of heme oxygenase-1 in peripheral blood predicts the progression and relapse risk of chronic myeloid leukemia. Chin. Med. J. (Engl. ) 127, 2795-2801 (2014). [PubMed]

379.Tertil,M. et al. Nrf2-heme oxygenase-1 axis in mucoepidermoid carcinoma of the lung: antitumoral effects associated with down-regulation of matrix metalloproteinases. Free Radic. Biol. Med. 89, 147-157 (2015). [PubMed]

380.Sacca,P. et al. Nuclear translocation of haeme oxygenase-1 is associated to prostate cancer. Br. J. Cancer 97, 1683-1689 (2007). [PubMed]

381.Gandini,N.A. et al. Nuclear localization of heme oxygenase-1 is associated with tumor progression of head and neck squamous cell carcinomas. Exp. Mol. Pathol. 93, 237-245 (2012). [PubMed]

382.Boschetto,P. et al. Decreased heme-oxygenase (HO)-1 in the macrophages of non-small cell lung cancer. Lung Cancer 59, 192-197 (2008). [PubMed]

383.Torisu-Itakura,H., Furue,M., Kuwano,M., & Ono,M. Co-expression of thymidine phosphorylase and heme oxygenase-1 in macrophages in human malignant vertical growth melanomas. Jpn. J. Cancer Res. 91, 906-910 (2000). [PubMed]

384.Nishie,A. et al. Macrophage infiltration and heme oxygenase-1 expression correlate with angiogenesis in human gliomas. Clin. Cancer Res. 5, 1107-1113 (1999). [PubMed]

385.Chau,L.Y. Heme oxygenase-1: emerging target of cancer therapy. J. Biomed. Sci. 22, 22 (2015). [PubMed]

386.Elguero,B. et al. Unveiling the association of STAT3 and HO-1 in prostate cancer: role beyond heme degradation. Neoplasia 14, 1043-1056 (2012). [PubMed]

387.Murakami,A. et al. Heme oxygenase-1 promoter polymorphism is associated with risk of malignant mesothelioma. Lung 190, 333-337 (2012). [PubMed]

388.Hong,C.C. et al. Genetic variability in iron-related oxidative stress pathways (Nrf2, NQ01, NOS3, and HO-1), iron intake, and risk of postmenopausal breast cancer. Cancer Epidemiol. Biomarkers Prev. 16, 1784-1794 (2007). [PubMed]

389.Hu,J.L. et al. Polymorphism in heme oxygenase-1 (HO-1) promoter and alcohol are related to the risk of esophageal squamous cell carcinoma on Chinese males. Neoplasma 57, 86-92 (2010). [PubMed]

390.Lo,S.S. et al. Heme oxygenase-1 gene promoter polymorphism is associated with risk of gastric adenocarcinoma and lymphovascular tumor invasion. Ann. Surg. Oncol. 14, 2250-2256 (2007). [PubMed]

391.Kikuchi,A. et al. Association of susceptibility to the development of lung adenocarcinoma with the heme oxygenase-1 gene promoter polymorphism. Hum. Genet. 116, 354-360 (2005). [PubMed]

392.Vashist,Y.K. et al. Heme oxygenase-1 germ line GTn promoter polymorphism is an independent prognosticator of tumor recurrence and survival in pancreatic cancer. J. Surg. Oncol. 104, 305-311 (2011). [PubMed]

393.Okamoto,I. et al. A microsatellite polymorphism in the heme oxygenase-1 gene promoter is associated with risk for melanoma. Int. J. Cancer 119, 1312-1315 (2006). [PubMed]

394.Pechlaner,R. et al. Heme oxygenase-1 gene promoter microsatellite polymorphism is associated with progressive atherosclerosis and incident cardiovascular disease. Arterioscler. Thromb. Vasc. Biol. 35, 229-236 (2015). [PubMed]

395.Chen,Y.H. et al. Length polymorphism in heme oxygenase-1 and risk of CKD among patients with coronary artery disease. J. Am. Soc. Nephrol. 25, 2669-2677 (2014). [PubMed]

396.Gulla,A. et al. Heme oxygenase-1 gene promoter polymorphism is associated with the development of necrotizing acute pancreatitis. Pancreas 43, 1271-1276 (2014). [PubMed]

397.Kaartokallio,T. et al. Microsatellite polymorphism in the heme oxygenase-1 promoter is associated with nonsevere and late-onset preeclampsia. Hypertension 64, 172-177 (2014). [PubMed]

398.Yamada,N. et al. Microsatellite polymorphism in the heme oxygenase-1 gene promoter is associated with susceptibility to emphysema. Am. J. Hum. Genet. 66, 187-195 (2000). [PubMed]

399.Sheu,C.C. et al. Heme oxygenase-1 microsatellite polymorphism and haplotypes are associated with the development of acute respiratory distress syndrome. Intensive Care Med. 35, 1343-1351 (2009). [PubMed]

400.Exner,M. et al. Heme oxygenase-1 gene promoter microsatellite polymorphism is associated with restenosis after percutaneous transluminal angioplasty. J. Endovasc. Ther. 8, 433-440 (2001). [PubMed]

401.Rueda,B. et al. HO-1 promoter polymorphism associated with rheumatoid arthritis. Arthritis Rheum. 56, 3953-3958 (2007). [PubMed]

402.Exner,M. et al. Donor heme oxygenase-1 genotype is associated with renal allograft function. Transplantation 77, 538-542 (2004). [PubMed]

403.Tiwari,P.K., Sethi,A., Basu,S., Raman,R., & Kumar,A. Heme oxygenase-1 gene variants and hyperbilirubinemia risk in North Indian newborns. Eur. J. Pediatr. 172, 1627-1632 (2013). [PubMed]

404.Cao,L. et al. Association of heme oxygenase-1 gene rs2071746 polymorphism with vascular outcomes in patients with atherosclerotic stroke. J. Neurol. Sci. 344, 154-157 (2014). [PubMed]

405.Wu,M.M. et al. Effect of heme oxygenase-1 gene promoter polymorphism on cancer risk by histological subtype: a prospective study in arseniasis-endemic areas in Taiwan. Int. J. Cancer 138, 1875-1886 (2016). [PubMed]

406.Jiraskova,A. et al. Association of serum bilirubin and promoter variations in HMOX1 and UGT1A1 genes with sporadic colorectal cancer. Int. J. Cancer 131, 1549-1555 (2012). [PubMed]

407.Han,S.W. et al. HMOX1 gene promoter polymorphism is not associated with coronary artery disease in Koreans. Ann. Lab. Med. 34, 337-344 (2014). [PubMed]

408.Lemaire,A. et al. Microsatellite polymorphism in the heme oxygenase-1 gene promoter is not associated with alcoholic liver disease severity. Hepatology 59, 352-353 (2014). [PubMed]

409.Zhang,L. et al. Association between the (GT)n polymorphism of the HO-1 gene promoter region and cancer risk: a meta-analysis. Asian Pac. J. Cancer Prev. 15, 4617-4622 (2014). [PubMed]

410.Song,F. et al. Association between heme oxygenase-1 gene promoter polymorphisms and type 2 diabetes in a Chinese population. Am. J. Epidemiol. 170, 747-756 (2009). [PubMed]

411.Qiu,C., Hevner,K., Enquobahrie,D.A., & Williams,M.A. Maternal serum heme-oxygenase-1 (HO-1) concentrations in early pregnancy and subsequent risk of gestational diabetes mellitus. PLoS ONE 7, e48060 (2012). [PubMed]

412.Adaikalakoteswari,A., Balasubramanyam,M., Rema,M., & Mohan,V. Differential gene expression of NADPH oxidase (p22phox) and hemoxygenase-1 in patients with Type 2 diabetes and microangiopathy. Diabet. Med. 23, 666-674 (2006). [PubMed]

413.Tiwari,S. & Ndisang,J.F. The heme oxygenase system and type-1 diabetes. Curr. Pharm. Des. 20, 1328-1337 (2014). [PubMed]

414.Lundquist,I. et al. Carbon monoxide stimulates insulin release and propagates Ca2+ signals between pancreatic b-cells. Am. J. Physiol. Endocrinol. Metab. 285, E1055-E1063 (2003). [PubMed]

415.Huang,S.H. et al. Transgenic expression of haem oxygenase-1 in pancreatic beta cells protects non-obese mice used as a model of diabetes from autoimmune destruction and prolongs graft survival following islet transplantation. Diabetologia 53, 2389-2400 (2010). [PubMed]

416.Castany,S., Carcole,M., Leanez,S., & Pol,O. The induction of heme oxygenase 1 decreases painful diabetic neuropathy and enhances the antinociceptive effects of morphine in diabetic mice. PLoS ONE 11, e0146427 (2016). [PubMed]

417.Burgess,A. et al. Adipocyte heme oxygenase-1 induction attenuates metabolic syndrome in both male and female obese mice. Hypertension 56, 1124-1130 (2010). [PubMed]

418.Liu,Z., Zhou,T., Ziegler,A.C., Dimitrion,P., & Zuo,L. Oxidative stress in neurodegenerative diseases: from molecular mechanisms to clinical applications. Oxid. Med. Cell Longev. 2017, 2525967 (2017). [PubMed]

419.Schipper,H.M., Cisse,S., & Stopa,E.G. Expression of heme oxygenase-1 in the senescent and Alzheimer-diseased brain. Ann. Neurol. 37, 758-768 (1995). [PubMed]

420.Yu,X. et al. Differences in vulnerability of neurons and astrocytes to heme oxygenase-1 modulation: Implications for mitochondrial ferritin. Sci. Rep. 6, 24200 (2016). [PubMed]

421.Schipper,H.M., Song,W., Zukor,H., Hascalovici,J.R., & Zeligman,D. Heme oxygenase-1 and neurodegeneration: expanding frontiers of engagement. J. Neurochem. 110, 469-485 (2009). [PubMed]

422.Schipper,H.M. & Song,W. A heme oxygenase-1 transducer model of degenerative and developmental brain disorders. Int. J. Mol. Sci. 16, 5400-5419 (2015). [PubMed]

423.Lee,D.W., Gelein,R.M., & Opanashuk,L.A. Heme-oxygenase-1 promotes polychlorinated biphenyl mixture aroclor 1254-induced oxidative stress and dopaminergic cell injury. Toxicol. Sci. 90, 159-167 (2006). [PubMed]

424.Duckers,H.J. et al. Heme oxygenase-1 protects against vascular constriction and proliferation. Nat. Med. 7, 693-698 (2001). [PubMed]

425.Ishikawa,K. et al. Heme oxygenase-1 inhibits atherosclerotic lesion formation in ldl-receptor knockout mice. Circ. Res. 88, 506-512 (2001). [PubMed]

426.Wang,L.J., Lee,T.S., Lee,F.Y., Pai,R.C., & Chau,L.Y. Expression of heme oxygenase-1 in atherosclerotic lesions. Am. J. Pathol. 152, 711-720 (1998). [PubMed]

427.Juan,S.H. et al. Adenovirus-mediated heme oxygenase-1 gene transfer inhibits the development of atherosclerosis in apolipoprotein E-deficient mice. Circulation 104, 1519-1525 (2001). [PubMed]

428.Idriss,N.K., Blann,A.D., & Lip,G.Y. Hemoxygenase-1 in cardiovascular disease. J. Am. Coll. Cardiol. 52, 971-978 (2008). [PubMed]

429.Liu,X.M., Chapman,G.B., Peyton,K.J., Schafer,A.I., & Durante,W. Carbon monoxide inhibits apoptosis in vascular smooth muscle cells. Cardiovasc. Res. 55, 396-405 (2002). [PubMed]

430.Motterlini,R. et al. Heme oxygenase-1-derived carbon monoxide contributes to the suppression of acute hypertensive responses in vivo. Circ. Res. 83, 568-577 (1998). [PubMed]

431.Yet,S.F. et al. Hypoxia induces severe right ventricular dilatation and infarction in heme oxygenase-1 null mice. J. Clin. Invest 103, R23-R29 (1999). [PubMed]

432.Schwertner,H.A., Jackson,W.G., & Tolan,G. Association of low serum concentration of bilirubin with increased risk of coronary artery disease. Clin. Chem. 40, 18-23 (1994). [PubMed]

433.Kawamura,K. et al. Bilirubin from heme oxygenase-1 attenuates vascular endothelial activation and dysfunction. Arterioscler. Thromb. Vasc. Biol. 25, 155-160 (2005). [PubMed]

434.Hopkins,P.N. et al. Higher serum bilirubin is associated with decreased risk for early familial coronary artery disease. Arterioscler. Thromb. Vasc. Biol. 16, 250-255 (1996). [PubMed]

435.Balla,J. et al. Heme, heme oxygenase, and ferritin: how the vascular endothelium survives (and dies) in an iron-rich environment. Antioxid. Redox Signal. 9, 2119-2137 (2007). [PubMed]

436.Chen,S.M., Li,Y.G., & Wang,D.M. Study on changes of heme oxygenase-1 expression in patients with coronary heart disease. Clin. Cardiol. 28, 197-201 (2005). [PubMed]

437.Li,Y.G. et al. Haem oxygenase-1 expression and coronary heart disease – association between levels of haem oxygenase-1 expression and angiographic morphology as well as the quantity of coronary lesions. Acta Cardiol. 61, 295-300 (2006). [PubMed]

438.Morsi,W.G. et al. HO-1 and VGEF gene expression in human arteries with advanced atherosclerosis. Clin. Biochem. 39, 1057-1062 (2006). [PubMed]

439.Beschorner,R. et al. Long-term expression of heme oxygenase-1 (HO-1, HSP-32) following focal cerebral infarctions and traumatic brain injury in humans. Acta Neuropathol. 100, 377-384 (2000). [PubMed]

440.Morgan,L. et al. Polymorphism of the heme oxygenase-1 gene and cerebral aneurysms. Br. J. Neurosurg. 19, 317-321 (2005). [PubMed]

441.Schallner,N. et al. Microglia regulate blood clearance in subarachnoid hemorrhage by heme oxygenase-1. J. Clin. Invest 125, 2609-2625 (2015). [PubMed]

442.Solari,V., Piotrowska,A.P., & Puri,P. Expression of heme oxygenase-1 and endothelial nitric oxide synthase in the lung of newborns with congenital diaphragmatic hernia and persistent pulmonary hypertension. J. Pediatr. Surg. 38, 808-813 (2003). [PubMed]

443.Minamino,T. et al. Targeted expression of heme oxygenase-1 prevents the pulmonary inflammatory and vascular responses to hypoxia. Proc. Natl. Acad. Sci. U. S. A 98, 8798-8803 (2001). [PubMed]

444.Belcher,J.D. et al. Heme oxygenase-1 gene delivery by Sleeping Beauty inhibits vascular stasis in a murine model of sickle cell disease. J. Mol. Med. (Berl) 88, 665-675 (2010). [PubMed]

445.Ursu,O.N., Sauter,M., Ettischer,N., Kandolf,R., & Klingel,K. Heme oxygenase-1 mediates oxidative stress and apoptosis in coxsackievirus B3-induced myocarditis. Cell. Physiol. Biochem. 33, 52-66 (2014). [PubMed]

446.Kang,J. et al. A FoxO1-dependent, but NRF2-independent induction of heme oxygenase-1 during muscle atrophy. FEBS Lett. 588, 79-85 (2014). [PubMed]

447.Radhakrishnan,N. et al. Human heme oxygenase-1 deficiency presenting with hemolysis, nephritis, and asplenia. J. Pediatr. Hematol. Oncol. 33, 74-78 (2011). [PubMed]

448.Yachie,A. et al. Oxidative stress causes enhanced endothelial cell injury in human heme oxygenase-1 deficiency. J. Clin. Invest 103, 129-135 (1999). [PubMed]

449.Poss,K.D. & Tonegawa,S. Heme oxygenase 1 is required for mammalian iron reutilization. Proc. Natl. Acad. Sci. U. S. A 94, 10919-10924 (1997). [PubMed]

450.Orozco,L.D. et al. Heme oxygenase-1 expression in macrophages plays a beneficial role in atherosclerosis. Circ. Res. 100, 1703-1711 (2007). [PubMed]

451.Kapturczak,M.H. et al. Heme oxygenase-1 modulates early inflammatory responses: evidence from the heme oxygenase-1-deficient mouse. Am. J. Pathol. 165, 1045-1053 (2004). [PubMed]

452.Eisenstein,R.S., Garcia-Mayol,D., Pettingell,W., & Munro,H.N. Regulation of ferritin and heme oxygenase synthesis in rat fibroblasts by different forms of iron. Proc. Natl. Acad. Sci. U. S. A 88, 688-692 (1991). [PubMed]

453.Stocker,R., McDonagh,A.F., Glazer,A.N., & Ames,B.N. Antioxidant activities of bile pigments: biliverdin and bilirubin. Methods Enzymol. 186, 301-309 (1990). [PubMed]

454.Song,R. et al. Carbon monoxide induces cytoprotection in rat orthotopic lung transplantation via anti-inflammatory and anti-apoptotic effects. Am. J. Pathol. 163, 231-242 (2003). [PubMed]

455.Inoue,S. et al. Transfer of heme oxygenase 1 cDNA by a replication-deficient adenovirus enhances interleukin 10 production from alveolar macrophages that attenuates lipopolysaccharide-induced acute lung injury in mice. Hum. Gene Ther. 12, 967-979 (2001). [PubMed]

456.Willis,D., Moore,A.R., Frederick,R., & Willoughby,D.A. Heme oxygenase: a novel target for the modulation of the inflammatory response. Nat. Med. 2, 87-90 (1996). [PubMed]

457.Sarady-Andrews,J.K. et al. Biliverdin administration protects against endotoxin-induced acute lung injury in rats. Am. J. Physiol. Lung Cell. Mol. Physiol. 289, L1131-L1137 (2005). [PubMed]

458.Tsoyi,K. et al. Heme-oxygenase-1 induction and carbon monoxide-releasing molecule inhibit lipopolysaccharide (LPS)-induced high-mobility group box 1 release in vitro and improve survival of mice in LPS- and cecal ligation and puncture-induced sepsis model in vivo. Mol. Pharmacol. 76, 173-182 (2009). [PubMed]

459.Hoetzel,A. et al. Carbon monoxide prevents ventilator-induced lung injury via caveolin-1. Crit. Care Med. 37, 1708-1715 (2009). [PubMed]

460.Hoetzel,A. et al. Carbon monoxide protects against ventilator-induced lung injury via PPAR-g and inhibition of Egr-1. Am. J. Respir. Crit. Care Med. 177, 1223-1232 (2008). [PubMed]

461.Dolinay,T., Szilasi,M., Liu,M., & Choi,A.M. Inhaled carbon monoxide confers antiinflammatory effects against ventilator-induced lung injury. Am. J. Respir. Crit. Care Med. 170, 613-620 (2004). [PubMed]

462.Mitchell,L.A. et al. Evaluation of inhaled carbon monoxide as an anti-inflammatory therapy in a nonhuman primate model of lung inflammation. Am. J. Physiol. Lung Cell. Mol. Physiol. 299, L891-L897 (2010). [PubMed]

463.Mazzola,S. et al. Carbon monoxide pretreatment prevents respiratory derangement and ameliorates hyperacute endotoxic shock in pigs. FASEB J. 19, 2045-2047 (2005). [PubMed]

464.Davis,B.K., Wen,H., & Ting,J.P. The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu. Rev. Immunol. 29, 707-735 (2011). [PubMed]

465.Schroder,K., Zhou,R., & Tschopp,J. The NLRP3 inflammasome: a sensor for metabolic danger? Science 327, 296-300 (2010). [PubMed]

466.Kim,S. et al. Endoplasmic reticulum stress is sufficient for the induction of IL-1b production via activation of the NF-kB and inflammasome pathways. Innate Immun. 20, 799-815 (2014). [PubMed]

467.Mizuguchi,S. et al. CORM-3-derived CO modulates polymorphonuclear leukocyte migration across the vascular endothelium by reducing levels of cell surface-bound elastase. Am. J. Physiol. Heart Circ. Physiol. 297, H920-H929 (2009). [PubMed]

468.Cepinskas,G., Katada,K., Bihari,A., & Potter,R.F. Carbon monoxide liberated from carbon monoxide-releasing molecule CORM-2 attenuates inflammation in the liver of septic mice. Am. J. Physiol. Gastrointest. Liver Physiol. 294, G184-G191 (2008). [PubMed]

469.Sun,B. et al. Role of CO-releasing molecules liberated CO in attenuating leukocytes sequestration and inflammatory responses in the lung of thermally injured mice. J. Surg. Res. 139, 128-135 (2007). [PubMed]

470.Chung,S.W., Liu,X., Macias,A.A., Baron,R.M., & Perrella,M.A. Heme oxygenase-1-derived carbon monoxide enhances the host defense response to microbial sepsis in mice. J. Clin. Invest. 118, 239-247 (2008). [PubMed]

471.Wilson,J.L. et al. Ru(CO)3Cl(Glycinate) (CORM-3): a carbon monoxide-releasing molecule with broad-spectrum antimicrobial and photosensitive activities against respiration and cation transport in Escherichia coli. Antioxid. Redox Signal. 19, 497-509 (2013). [PubMed]

472.Desmard,M. et al. A carbon monoxide-releasing molecule (CORM-3) exerts bactericidal activity against Pseudomonas aeruginosa and improves survival in an animal model of bacteraemia. FASEB J. 23, 1023-1031 (2009). [PubMed]

473.Tavares,A.F. et al. The bactericidal activity of carbon monoxide-releasing molecules against Helicobacter pylori. PLoS ONE 8, e83157 (2013). [PubMed]

474.Rana,N., McLean,S., Mann,B.E., & Poole,R.K. Interaction of the carbon monoxide-releasing molecule Ru(CO)3Cl(glycinate) (CORM-3) with Salmonella enterica serovar Typhimurium: in situ measurements of carbon monoxide binding by integrating cavity dual-beam spectrophotometry. Microbiology 160, 2771-2779 (2014). [PubMed]

475.Musameh,M.D., Green,C.J., Mann,B.E., Fuller,B.J., & Motterlini,R. Improved myocardial function after cold storage with preservation solution supplemented with a carbon monoxide-releasing molecule (CORM-3). J. Heart Lung Transplant. 26, 1192-1198 (2007). [PubMed]

476.Wegiel,B. et al. Heme oxygenase-1 derived carbon monoxide permits maturation of myeloid cells. Cell Death Dis. 5, e1139 (2014). [PubMed]

477.Di Biase,S. & Longo,V.D. Fasting-induced differential stress sensitization in cancer treatment. Mol. Cell Oncol. 3, e1117701 (2016). [PubMed]

478.Chauveau,C. et al. Heme oxygenase-1 expression inhibits dendritic cell maturation and proinflammatory function but conserves IL-10 expression. Blood 106, 1694-1702 (2005). [PubMed]

479.Pae,H.O., Oh,G.S., Choi,B.M., Chae,S.C., & Chung,H.T. Differential expressions of heme oxygenase-1 gene in CD25 and CD25+ subsets of human CD4+ T cells. Biochem. Biophys. Res. Commun. 306, 701-705 (2003). [PubMed]

480.Park,D.J., Agarwal,A., & George,J.F. Heme oxygenase-1 expression in murine dendritic cell subpopulations: effect on CD8+ dendritic cell differentiation in vivo. Am. J. Pathol. 176, 2831-2839 (2010). [PubMed]

481.Brusko,T.M., Wasserfall,C.H., Agarwal,A., Kapturczak,M.H., & Atkinson,M.A. An integral role for heme oxygenase-1 and carbon monoxide in maintaining peripheral tolerance by CD4+CD25+ regulatory T cells. J. Immunol. 174, 5181-5186 (2005). [PubMed]

482.Xia,Z.W. et al. Heme oxygenase-1-mediated CD4+CD25high regulatory T cells suppress allergic airway inflammation. J. Immunol. 177, 5936-5945 (2006). [PubMed]

483.El Andaloussi,A. & Lesniak,M.S. CD4+ CD25+ FoxP3+ T-cell infiltration and heme oxygenase-1 expression correlate with tumor grade in human gliomas. J. Neurooncol. 83, 145-152 (2007). [PubMed]

484.Pae,H.O. et al. Carbon monoxide produced by heme oxygenase-1 suppresses T cell proliferation via inhibition of IL-2 production. J. Immunol. 172, 4744-4751 (2004). [PubMed]

485.Biburger,M., Theiner,G., Schadle,M., Schuler,G., & Tiegs,G. Pivotal advance: heme oxygenase 1 expression by human CD4+ T cells is not sufficient for their development of immunoregulatory capacity. J. Leukoc. Biol. 87, 193-202 (2010). [PubMed]

486.Choi,B.M. et al. Overexpression of heme oxygenase (HO)-1 renders Jurkat T cells resistant to fas-mediated apoptosis: involvement of iron released by HO-1. Free Radic. Biol. Med. 36, 858-871 (2004). [PubMed]

487.Choi,B.M., Pae,H.O., Jeong,Y.R., Kim,Y.M., & Chung,H.T. Critical role of heme oxygenase-1 in Foxp3-mediated immune suppression. Biochem. Biophys. Res. Commun. 327, 1066-1071 (2005). [PubMed]

488.Dey,M. et al. Heme oxygenase-1 protects regulatory T cells from hypoxia-induced cellular stress in an experimental mouse brain tumor model. J. Neuroimmunol. 266, 33-42 (2014). [PubMed]

489.Blancou,P. & Anegon,I. Editorial: Heme oxygenase-1 and dendritic cells: what else? J. Leukoc. Biol. 87, 185-187 (2010). [PubMed]

490.Di Biase,S. et al. Fasting-mimicking diet reduces HO-1 to promote T cell-mediated tumor cytotoxicity. Cancer Cell 30, 136-146 (2016). [PubMed]

491.Gomez-Lomeli,P. et al. Increase of IFN-g and TNF-a production in CD107a + NK-92 cells co-cultured with cervical cancer cell lines pre-treated with the HO-1 inhibitor. Cancer Cell Int. 14, 100 (2014). [PubMed]

492.Orange,J.S. Formation and function of the lytic NK-cell immunological synapse. Nat. Rev. Immunol. 8, 713-725 (2008). [PubMed]

493.Simon,T. et al. Carbon monoxide-treated dendritic cells decrease b1-integrin induction on CD8+ T cells and protect from type 1 diabetes. Eur. J. Immunol. 43, 209-218 (2013). [PubMed]

494.Liu,X. et al. Heme oxygenase-1 (HO-1) inhibits postmyocardial infarct remodeling and restores ventricular function. FASEB J. 20, 207-216 (2006). [PubMed]

495.Otterbein,L.E. et al. Exogenous administration of heme oxygenase-1 by gene transfer provides protection against hyperoxia-induced lung injury. J. Clin. Invest 103, 1047-1054 (1999). [PubMed]

496.Sunamura,M. et al. Heme oxygenase-1 accelerates tumor angiogenesis of human pancreatic cancer. Angiogenesis 6, 15-24 (2003). [PubMed]

497.Shang,F.T. et al. ZnPPIX inhibits peritoneal metastasis of gastric cancer via its antiangiogenic activity. Biomed. Pharmacother. 71, 240-246 (2015). [PubMed]

498.Zhang,Y., Jiang,G., Sauler,M., & Lee,P.J. Lung endothelial HO-1 targeting in vivo using lentiviral miRNA regulates apoptosis and autophagy during oxidant injury. FASEB J. 27, 4041-4058 (2013). [PubMed]

499.Abraham,N.G., Asija,A., Drummond,G., & Peterson,S. Heme oxygenase -1 gene therapy: recent advances and therapeutic applications. Curr. Gene Ther. 7, 89-108 (2007). [PubMed]

500.Yin,Y. et al. Expression and function of heme oxygenase-1 in human gastric cancer. Exp. Biol. Med. (Maywood) 237, 362-371 (2012). [PubMed]

501.Jeon,W.K. et al. Smad7 sensitizes A549 lung cancer cells to cisplatin-induced apoptosis through heme oxygenase-1 inhibition. Biochem. Biophys. Res. Commun. 420, 288-292 (2012). [PubMed]

502.Liu,Y.S. et al. Zinc protoporphyrin IX enhances chemotherapeutic response of hepatoma cells to cisplatin. World J. Gastroenterol. 20, 8572-8582 (2014). [PubMed]

503.Lv,X., Song,D.M., Niu,Y.H., & Wang,B.S. Inhibition of heme oxygenase-1 enhances the chemosensitivity of laryngeal squamous cell cancer Hep-2 cells to cisplatin. Apoptosis 21, 489-501 (2016). [PubMed]

504.Berberat,P.O. et al. Inhibition of heme oxygenase-1 increases responsiveness of pancreatic cancer cells to anticancer treatment. Clin. Cancer Res. 11, 3790-3798 (2005). [PubMed]

505.Miyake,M. et al. Clinical significance of heme oxygenase-1 expression in non-muscle-invasive bladder cancer. Urol. Int. 85, 355-363 (2010). [PubMed]

506.Liu,Y. et al. Inhibition of heme oxygenase-1 enhances anti-cancer effects of arsenic trioxide on glioma cells. J. Neurooncol. 104, 449-458 (2011). [PubMed]

507.Furfaro,A.L. et al. Resistance of neuroblastoma GI-ME-N cell line to glutathione depletion involves Nrf2 and heme oxygenase-1. Free Radic. Biol. Med. 52, 488-496 (2012). [PubMed]

508.Furfaro,A.L. et al. Role of Nrf2, HO-1 and GSH in neuroblastoma cell resistance to bortezomib. PLoS ONE 11, e0152465 (2016). [PubMed]

509.Furfaro,A.L. et al. HO-1 up-regulation: a key point in high-risk neuroblastoma resistance to bortezomib. Biochim. Biophys. Acta 1842, 613-622 (2014). [PubMed]

510.Lin,X. et al. Heme oxygenase-1 suppresses the apoptosis of acute myeloid leukemia cells via the JNK/c-JUN signaling pathway. Leuk. Res. 39, 544-552 (2015). [PubMed]

511.Cao,L. et al. Heme oxygenase-1 contributes to imatinib resistance by promoting autophagy in chronic myeloid leukemia through disrupting the mTOR signaling pathway. Biomed. Pharmacother. 78, 30-38 (2016). [PubMed]

512.Mayerhofer,M. et al. Identification of heme oxygenase-1 as a novel BCR/ABL-dependent survival factor in chronic myeloid leukemia. Cancer Res. 64, 3148-3154 (2004). [PubMed]

513.Heasman,S.A., Zaitseva,L., Bowles,K.M., Rushworth,S.A., & Macewan,D.J. Protection of acute myeloid leukaemia cells from apoptosis induced by front-line chemotherapeutics is mediated by haem oxygenase-1. Oncotarget 2, 658-668 (2011). [PubMed]

514.Zou,C. et al. Heme oxygenase-1 retards hepatocellular carcinoma progression through the microRNA pathway. Oncol. Rep. 36, 2715-2722 (2016). [PubMed]

515.Alkhateeb,A.A. & Connor,J.R. The significance of ferritin in cancer: anti-oxidation, inflammation and tumorigenesis. Biochim. Biophys. Acta 1836, 245-254 (2013). [PubMed]

516.Gibbs,P.E., Miralem,T., & Maines,M.D. Biliverdin reductase: a target for cancer therapy? Front. Pharmacol. 6, 119 (2015). [PubMed]

517.Vreman,H.J., Ekstrand,B.C., & Stevenson,D.K. Selection of metalloporphyrin heme oxygenase inhibitors based on potency and photoreactivity. Pediatr. Res. 33, 195-200 (1993). [PubMed]

518.Wong,R.J. et al. In vitro inhibition of heme oxygenase isoenzymes by metalloporphyrins. J. Perinatol. 31 Suppl. 1, S35-S41 (2011). [PubMed]

519.Frank,J. et al. Inhibition of heme oxygenase-1 increases responsiveness of melanoma cells to ALA-based photodynamic therapy. Int. J. Oncol. 31, 1539-1545 (2007). [PubMed]

520.Marinissen,M.J. et al. Inhibition of heme oxygenase-1 interferes with the transforming activity of the Kaposi sarcoma herpesvirus-encoded G protein-coupled receptor. J. Biol. Chem. 281, 11332-11346 (2006). [PubMed]

521.Schulz,S., Wong,R.J., Vreman,H.J., & Stevenson,D.K. Metalloporphyrins – an update. Front. Pharmacol. 3, 68 (2012). [PubMed]

522.Kinobe,R.T., Dercho,R.A., & Nakatsu,K. Inhibitors of the heme oxygenase – carbon monoxide system: on the doorstep of the clinic? Can. J. Physiol. Pharmacol. 86, 577-599 (2008). [PubMed]

523.Kwok,S.C. Zinc protoporphyrin upregulates heme oxygenase-1 in PC-3 cells via the stress response pathway. Int. J. Cell Biol. 2013, 162094 (2013). [PubMed]

524.Grundemar,L. & Ny,L. Pitfalls using metalloporphyrins in carbon monoxide research. Trends Pharmacol. Sci. 18, 193-195 (1997). [PubMed]

525.Lu,D.Y. et al. Osteopontin increases heme oxygenase-1 expression and subsequently induces cell migration and invasion in glioma cells. Neuro Oncol. 14, 1367-1378 (2012). [PubMed]

526.He,C.X. et al. Effects of zinc deuteroporphyrin bis glycol on newborn mice after heme loading. Pediatr. Res. 70, 467-472 (2011). [PubMed]

527.Emtestam,L., Berglund,L., Angelin,B., & Kappas,A. Treatment of psoriasis vulgaris with a synthetic metalloporphyrin and UVA light. Acta Derm. Venereol. Suppl. (Stockh.) 146, 107-110 (1989). [PubMed]

528.Labbé,R.F., Vreman,H.J., & Stevenson,D.K. Zinc protoporphyrin: a metabolite with a mission. Clin. Chem. 45, 2060-2072 (1999).  [PubMed]

529.Hintz,S.R., Vreman,H.J., & Stevenson,D.K. Mortality of metalloporphyrin-treated neonatal rats after light exposure. Dev. Pharmacol. Ther. 14, 187-192 (1990). [PubMed]

530.Qato,M.K. & Maines,M.D. Prevention of neonatal hyperbilirubinaemia in non-human primates by Zn-protoporphyrin. Biochem. J. 226, 51-57 (1985). [PubMed]

531.Maines,M.D. Zinc . protoporphyrin is a selective inhibitor of heme oxygenase activity in the neonatal rat. Biochim. Biophys. Acta 673, 339-350 (1981). [PubMed]

532.Iyer,A.K. et al. Polymeric micelles of zinc protoporphyrin for tumor targeted delivery based on EPR effect and singlet oxygen generation. J. Drug Target 15, 496-506 (2007). [PubMed]

533.Sahoo,S.K. et al. Pegylated zinc protoporphyrin: a water-soluble heme oxygenase inhibitor with tumor-targeting capacity. Bioconjug. Chem. 13, 1031-1038 (2002). [PubMed]

534.Drummond,G.S., Galbraith,R.A., Sardana,M.K., & Kappas,A. Reduction of the C2 and C4 vinyl groups of Sn-protoporphyrin to form Sn-mesoporphyrin markedly enhances the ability of the metalloporphyrin to inhibit in vivo heme catabolism. Arch. Biochem. Biophys. 255, 64-74 (1987). [PubMed]

535.Vreman,H.J., Lee,O.K., & Stevenson,D.K. In vitro and in vivo characteristics of a heme oxygenase inhibitor: ZnBG. Am. J. Med. Sci. 302, 335-341 (1991). [PubMed]

536.Chernick,R.J., Martasek,P., Levere,R.D., Margreiter,R., & Abraham,N.G. Sensitivity of human tissue heme oxygenase to a new synthetic metalloporphyrin. Hepatology 10, 365-369 (1989). [PubMed]

537.Martasek,P. et al. Properties of human kidney heme oxygenase: inhibition by synthetic heme analogues and metalloporphyrins. Biochem. Biophys. Res. Commun. 157, 480-487 (1988). [PubMed]

538.Bhutani,V.K. et al. Clinical trial of tin mesoporphyrin to prevent neonatal hyperbilirubinemia. J. Perinatol. 36, 533-539 (2016). [PubMed]

539.Pittala,V., Salerno,L., Romeo,G., Modica,M.N., & Siracusa,M.A. A focus on heme oxygenase-1 (HO-1) inhibitors. Curr. Med. Chem. 20, 3711-3732 (2013). [PubMed]

540.Vlahakis,J.Z. et al. Synthesis and evaluation of azalanstat analogues as heme oxygenase inhibitors. Bioorg. Med. Chem. Lett. 15, 1457-1461 (2005). [PubMed]

541.Rahman,M.N. et al. Structural insights into human heme oxygenase-1 inhibition by potent and selective azole-based compounds. J. R. Soc. Interface 10, 20120697 (2013). [PubMed]

542.De Nagel,D.C., Verity,A.N., Madden,F.E., & Yang,C.O. Identification of non-porphyrin inhibitors of heme oxygenase-1. Neuroscience 24, 2058 (1998). [Google Scholar]

543.Vlahakis,J.Z. et al. Imidazole-dioxolane compounds as isozyme-selective heme oxygenase inhibitors. J. Med. Chem. 49, 4437-4441 (2006). [PubMed]

544.Even,B. et al. Heme oxygenase-1 induction attenuates senescence in chronic obstructive pulmonary disease lung fibroblasts by protecting against mitochondria dysfunction. Aging Cell 17, e12837 (2018). [PubMed]

545.Hettiarachchi,N.T. et al. Heme oxygenase-1 derived carbon monoxide suppresses Ab1-42 toxicity in astrocytes. Cell Death Dis. 8, e2884 (2017). [PubMed]

546.Csongradi,E., Vera,T., Rimoldi,J.M., Gadepalli,R.S., & Stec,D.E. In vivo inhibition of renal heme oxygenase with an imidazole-dioxolane inhibitor. Pharmacol. Res. 61, 525-530 (2010). [PubMed]

547.Csongradi,E., Storm,M.V., & Stec,D.E. Renal inhibition of heme oxygenase-1 increases blood pressure in angiotensin II-dependent hypertension. Int. J. Hypertens. 2012, 497213 (2012). [PubMed]

548.Stec,D.E., Juncos,L.A., & Granger,J.P. Renal intramedullary infusion of tempol normalizes the blood pressure response to intrarenal blockade of heme oxygenase-1 in angiotensin II-dependent hypertension. J. Am. Soc. Hypertens. 10, 346-351 (2016). [PubMed]

549.Gupta,A. et al. Neurotherapeutic effects of novel HO-1 inhibitors in vitro and in a transgenic mouse model of Alzheimer’s disease. J. Neurochem. 131, 778-790 (2014). [PubMed]

550.Salerno,L. et al. Potholing of the hydrophobic heme oxygenase-1 western region for the search of potent and selective imidazole-based inhibitors. Eur. J. Med. Chem. 148, 54-62 (2018). [PubMed]

551.Greish,K.F. et al. Novel structural insight into inhibitors of heme oxygenase-1 (HO-1) by new imidazole-based compounds: biochemical and in vitro anticancer activity evaluation. Molecules 23, (2018). [PubMed]

552.Greish,K., Mathur,A., Bakhiet,M., & Taurin,S. Nanomedicine: is it lost in translation? Ther. Deliv. 9, 269-285 (2018). [PubMed]

553.Krönke,G. et al. Expression of heme oxygenase-1 in human vascular cells is regulated by peroxisome proliferator-activated receptors. Arterioscler. Thromb. Vasc. Biol. 27, 1276-1282 (2007). [PubMed]

554.Wu,B.J., Chen,K., Barter,P.J., & Rye,K.A. Niacin inhibits vascular inflammation via the induction of heme oxygenase-1. Circulation 125, 150-158 (2012). [PubMed]

555.Chen,J.C., Huang,K.C., & Lin,W.W. HMG-CoA reductase inhibitors upregulate heme oxygenase-1 expression in murine RAW264.7 macrophages via ERK, p38 MAPK and protein kinase G pathways. Cell Signal. 18, 32-39 (2006). [PubMed]

556.Uchiyama,T. et al. Simvastatin induces heat shock factor 1 in vascular endothelial cells. Atherosclerosis 188, 265-273 (2006). [PubMed]

557.Chen,H.H., Chen,T.W., & Lin,H. Pravastatin attenuates carboplatin-induced nephrotoxicity in rodents via peroxisome proliferator-activated receptor a-regulated heme oxygenase-1. Mol. Pharmacol. 78, 36-45 (2010). [PubMed]

558.Hinkelmann,U., Grosser,N., Erdmann,K., Schroder,H., & Immenschuh,S. Simvastatin-dependent up-regulation of heme oxygenase-1 via mRNA stabilization in human endothelial cells. Eur. J. Pharm. Sci. 41, 118-124 (2010). [PubMed]

559.Lee,T.S., Chang,C.C., Zhu,Y., & Shyy,J.Y. Simvastatin induces heme oxygenase-1: a novel mechanism of vessel protection. Circulation 110, 1296-1302 (2004). [PubMed]

560.Makabe,S. et al. Fluvastatin protects vascular smooth muscle cells against oxidative stress through the Nrf2-dependent antioxidant pathway. Atherosclerosis 213, 377-384 (2010). [PubMed]

561.Wu,B.J. et al. Antioxidants protect from atherosclerosis by a heme oxygenase-1 pathway that is independent of free radical scavenging. J. Exp. Med. 203, 1117-1127 (2006). [PubMed]

562.Tanous,D. et al. Probucol inhibits in-stent thrombosis and neointimal hyperplasia by promoting re-endothelialization. Atherosclerosis 189, 342-349 (2006). [PubMed]

563.Deng,Y.M., Wu,B.J., Witting,P.K., & Stocker,R. Probucol protects against smooth muscle cell proliferation by upregulating heme oxygenase-1. Circulation 110, 1855-1860 (2004). [PubMed]

564.Zhou,Z. et al. Activation of the Nrf2/ARE signaling pathway by probucol contributes to inhibiting inflammation and neuronal apoptosis after spinal cord injury. Oncotarget 8, 52078-52093 (2017). [PubMed]

565.Lau,A.K. et al. Probucol promotes functional reendothelialization in balloon-injured rabbit aortas. Circulation 107, 2031-2036 (2003). [PubMed]

566.Wu,B.J. et al. Heme oxygenase-1 increases endothelial progenitor cells. Arterioscler. Thromb. Vasc. Biol. 29, 1537-1542 (2009). [PubMed]

567.Midwinter,R.G. et al. Succinobucol induces apoptosis in vascular smooth muscle cells. Free Radic. Biol. Med. 52, 871-879 (2012). [PubMed]

568.Tardif,J.C. et al. Effects of AGI-1067 and probucol after percutaneous coronary interventions. Circulation 107, 552-558 (2003). [PubMed]

569.Walldius,G. et al. The effect of probucol on femoral atherosclerosis: the Probucol Quantitative Regression Swedish Trial (PQRST). Am. J. Cardiol. 74, 875-883 (1994). [PubMed]

570.Sawayama,Y. et al. Effects of probucol and pravastatin on common carotid atherosclerosis in patients with asymptomatic hypercholesterolemia. Fukuoka Atherosclerosis Trial (FAST). J. Am. Coll. Cardiol. 39, 610-616 (2002). [PubMed]

571.Tardif,J.C. et al. Effects of succinobucol (AGI-1067) after an acute coronary syndrome: a randomised, double-blind, placebo-controlled trial. Lancet 371, 1761-1768 (2008). [PubMed]

572.Yamashita,S. et al. Rationale and design of the PROSPECTIVE trial: probucol trial for secondary prevention of atherosclerotic events in patients with prior coronary heart disease. J. Atheroscler. Thromb. 23, 746-756 (2016). [PubMed]

573.Choi,B.M. et al. Induction of heme oxygenase-1 is involved in anti-proliferative effects of paclitaxel on rat vascular smooth muscle cells. Biochem. Biophys. Res. Commun. 321, 132-137 (2004). [PubMed]

574.Visner,G.A. et al. Rapamycin induces heme oxygenase-1 in human pulmonary vascular cells: implications in the antiproliferative response to rapamycin. Circulation 107, 911-916 (2003). [PubMed]

575.Banerjee,P. et al. Heme oxygenase-1 promotes survival of renal cancer cells through modulation of apoptosis- and autophagy-regulating molecules. J. Biol. Chem. 287, 32113-32123 (2012). [PubMed]

576.Afroz,F. et al. Rapamycin induces the expression of heme oxygenase-1 and peroxyredoxin-1 in normal hepatocytes but not in tumorigenic liver cells. Exp. Mol. Pathol. 105, 334-344 (2018). [PubMed]

577.Finn,A.V. et al. Differential healing after sirolimus, paclitaxel, and bare metal stent placement in combination with peroxisome proliferator-activator receptor gamma agonists: requirement for mTOR/Akt2 in PPARg activation. Circ. Res. 105, 1003-1012 (2009). [PubMed]

578.Li,M. et al. Heme oxygenase-1/p21WAF1 mediates peroxisome proliferator-activated receptor-gamma signaling inhibition of proliferation of rat pulmonary artery smooth muscle cells. FEBS J. 277, 1543-1550 (2010). [PubMed]

579.Mersmann,J., Tran,N., Zacharowski,P.A., Grotemeyer,D., & Zacharowski,K. Rosiglitazone is cardioprotective in a murine model of myocardial I/R. Shock 30, 64-68 (2008). [PubMed]

580.Zhang,D. et al. Activation of PPAR-g ameliorates pulmonary arterial hypertension via inducing heme oxygenase-1 and p21WAF1: an in vivo study in rats. Life Sci. 98, 39-43 (2014). [PubMed]

581.McCarthy,F.P. et al. Peroxisome proliferator-activated receptor-gamma as a potential therapeutic target in the treatment of preeclampsia. Hypertension 58, 280-286 (2011). [PubMed]

582.Cho,R.L. et al. Heme oxygenase-1 induction by rosiglitazone via PKCa/AMPKa/p38 MAPKa/SIRT1/PPARg pathway suppresses lipopolysaccharide-mediated pulmonary inflammation. Biochem. Pharmacol. 148, 222-237 (2018). [PubMed]

583.Grosser,N. et al. Heme oxygenase-1 induction may explain the antioxidant profile of aspirin. Biochem. Biophys. Res. Commun. 308, 956-960 (2003). [PubMed]

584.Jian,Z. et al. Aspirin induces Nrf2-mediated transcriptional activation of haem oxygenase-1 in protection of human melanocytes from H2O2-induced oxidative stress. J. Cell. Mol. Med. 20, 1307-1318 (2016). [PubMed]

585.Wei,W. et al. Aspirin suppresses neuronal apoptosis, reduces tissue inflammation, and restrains astrocyte activation by activating the Nrf2/HO-1 signaling pathway. Neuroreport 29, 524-531 (2018). [PubMed]

586.Bharucha,A.E. et al. Effects of aspirin & simvastatin and aspirin, simvastatin, & lipoic acid on heme oxygenase-1 in healthy human subjects. Neurogastroenterol. Motil. 26, 1437-1442 (2014). [PubMed]

587.Foresti,R. et al. Small molecule activators of the Nrf2-HO-1 antioxidant axis modulate heme metabolism and inflammation in BV2 microglia cells. Pharmacol. Res. 76, 132-148 (2013). [PubMed]

588.Schilling,S., Goelz,S., Linker,R., Luehder,F., & Gold,R. Fumaric acid esters are effective in chronic experimental autoimmune encephalomyelitis and suppress macrophage infiltration. Clin. Exp. Immunol. 145, 101-107 (2006). [PubMed]

589.Linker,R.A. et al. Fumaric acid esters exert neuroprotective effects in neuroinflammation via activation of the Nrf2 antioxidant pathway. Brain 134, 678-692 (2011). [PubMed]

590.Oh,C.J. et al. Dimethylfumarate attenuates restenosis after acute vascular injury by cell-specific and Nrf2-dependent mechanisms. Redox Biol. 2, 855-864 (2014). [PubMed]

591.Altmeyer,P.J. et al. Antipsoriatic effect of fumaric acid derivatives. Results of a multicenter double-blind study in 100 patients. J. Am. Acad. Dermatol. 30, 977-981 (1994). [PubMed]

592.Nicholas,J.A., Boster,A.L., Imitola,J., O’Connell,C., & Racke,M.K. Design of oral agents for the management of multiple sclerosis: benefit and risk assessment for dimethyl fumarate. Drug Des. Devel. Ther. 8, 897-908 (2014). [PubMed]

593.Dubey,D. et al. Dimethyl fumarate in relapsing-remitting multiple sclerosis: rationale, mechanisms of action, pharmacokinetics, efficacy and safety. Expert. Rev. Neurother. 15, 339-346 (2015). [PubMed]

594.Takaya,K. et al. Validation of the multiple sensor mechanism of the Keap1-Nrf2 system. Free Radic. Biol. Med. 53, 817-827 (2012). [PubMed]

595.Scapagnini,G. et al. Caffeic acid phenethyl ester and curcumin: a novel class of heme oxygenase-1 inducers. Mol. Pharmacol. 61, 554-561 (2002). [PubMed]

596.Balogun,E. et al. Curcumin activates the haem oxygenase-1 gene via regulation of Nrf2 and the antioxidant-responsive element. Biochem. J. 371, 887-895 (2003). [PubMed]

597.Pullikotil,P. et al. Epigallocatechin gallate induces expression of heme oxygenase-1 in endothelial cells via p38 MAPK and Nrf-2 that suppresses proinflammatory actions of TNF-a. J. Nutr. Biochem. 23, 1134-1145 (2012). [PubMed]

598.Scapagnini,G. et al. Ethyl ferulate, a lipophilic polyphenol, induces HO-1 and protects rat neurons against oxidative stress. Antioxid. Redox Signal. 6, 811-818 (2004). [PubMed]

599.Yao,P. et al. Quercetin protects human hepatocytes from ethanol-derived oxidative stress by inducing heme oxygenase-1 via the MAPK/Nrf2 pathways. J. Hepatol. 47, 253-261 (2007). [PubMed]

600.Chen,C.Y., Jang,J.H., Li,M.H., & Surh,Y.J. Resveratrol upregulates heme oxygenase-1 expression via activation of NF-E2-related factor 2 in PC12 cells. Biochem. Biophys. Res. Commun. 331, 993-1000 (2005). [PubMed]

601.Gupta,S.C., Patchva,S., & Aggarwal,B.B. Therapeutic roles of curcumin: lessons learned from clinical trials. AAPS J. 15, 195-218 (2013). [PubMed]

602.Klickovic,U. et al. Human pharmacokinetics of high dose oral curcumin and its effect on heme oxygenase-1 expression in healthy male subjects. Biomed. Res. Int. 2014, 458592 (2014). [PubMed]

603.Shoskes,D. et al. Beneficial effects of the bioflavonoids curcumin and quercetin on early function in cadaveric renal transplantation: a randomized placebo controlled trial. Transplantation 80, 1556-1559 (2005). [PubMed]

604.Prasad,S., Tyagi,A.K., & Aggarwal,B.B. Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: the golden pigment from golden spice. Cancer Res. Treat. 46, 2-18 (2014). [PubMed]

605.Yang,C.S., Lambert,J.D., Ju,J., Lu,G., & Sang,S. Tea and cancer prevention: molecular mechanisms and human relevance. Toxicol. Appl. Pharmacol. 224, 265-273 (2007). [PubMed]

606.Khan,N. & Mukhtar,H. Multitargeted therapy of cancer by green tea polyphenols. Cancer Lett. 269, 269-280 (2008). [PubMed]

607.Yang,G.Z. et al. Epigallocatechin-3-gallate protects HUVECs from PM2.5-induced oxidative stress injury by activating critical antioxidant pathways. Molecules 20, 6626-6639 (2015). [PubMed]

608.Mähler,A. et al. Epigallocatechin-3-gallate: a useful, effective and safe clinical approach for targeted prevention and individualised treatment of neurological diseases? EPMA J. 4, 5 (2013). [PubMed]

609.Schroeder,E.K. et al. Green tea epigallocatechin 3-gallate accumulates in mitochondria and displays a selective antiapoptotic effect against inducers of mitochondrial oxidative stress in neurons. Antioxid. Redox Signal. 11, 469-480 (2009). [PubMed]

610.Aktas,O. et al. Green tea epigallocatechin-3-gallate mediates T cellular NF-kB inhibition and exerts neuroprotection in autoimmune encephalomyelitis. J. Immunol. 173, 5794-5800 (2004). [PubMed]

611.van Horssen,J. et al. Severe oxidative damage in multiple sclerosis lesions coincides with enhanced antioxidant enzyme expression. Free Radic. Biol. Med. 45, 1729-1737 (2008). [PubMed]

612.Janssen,A. et al. Treatment of chronic experimental autoimmune encephalomyelitis with epigallocatechin-3-gallate and glatiramer acetate alters expression of heme-oxygenase-1. PLoS ONE 10, e0130251 (2015). [PubMed]

613.Stahnke,T., Stadelmann,C., Netzler,A., Bruck,W., & Richter-Landsberg,C. Differential upregulation of heme oxygenase-1 (HSP32) in glial cells after oxidative stress and in demyelinating disorders. J. Mol. Neurosci. 32, 25-37 (2007). [PubMed]

614.Wada,Y. et al. The protective effect of epigallocatechin 3-gallate on mouse pancreatic islets via the Nrf2 pathway. Surg. Today, in press (2019). [PubMed]

615.Mi,Y. et al. EGCG evokes Nrf2 nuclear translocation and dampens PTP1B expression to ameliorate metabolic misalignment under insulin resistance condition. Food Funct. 9, 1510-1523 (2018). [PubMed]

616.Rosa,P.M., Martins,L.A.M., Souza,D.O., & Quincozes-Santos,A. Glioprotective effect of resveratrol: an emerging therapeutic role for oligodendroglial cells. Mol. Neurobiol. 55, 2967-2978 (2018). [PubMed]

617.Shen,C. et al. Resveratrol pretreatment attenuates injury and promotes proliferation of neural stem cells following oxygen-glucose deprivation/reoxygenation by upregulating the expression of Nrf2, HO-1 and NQO1 in vitro. Mol. Med. Rep. 14, 3646-3654 (2016). [PubMed]

618.Zhang,X. et al. Resveratrol protects against Helicobacter pylori-associated gastritis by combating oxidative stress. Int. J. Mol. Sci. 16, 27757-27769 (2015). [PubMed]

619.Szkudelski,T. & Szkudelska,K. Resveratrol and diabetes: from animal to human studies. Biochim. Biophys. Acta 1852, 1145-1154 (2015). [PubMed]

620.Seyyedebrahimi,S., Khodabandehloo,H., Nasli,E.E., & Meshkani,R. The effects of resveratrol on markers of oxidative stress in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled clinical trial. Acta Diabetol. 55, 341-353 (2018). [PubMed]

621.Gocmez,S.S. et al. Resveratrol prevents cognitive deficits by attenuating oxidative damage and inflammation in rat model of streptozotocin diabetes induced vascular dementia. Physiol. Behav. 201, 198-207 (2019). [PubMed]

622.Kakar,S.S., Jala,V.R., & Fong,M.Y. Synergistic cytotoxic action of cisplatin and withaferin A on ovarian cancer cell lines. Biochem. Biophys. Res. Commun. 423, 819-825 (2012). [PubMed]

623.Fong,M.Y. et al. Withaferin A synergizes the therapeutic effect of doxorubicin through ROS-mediated autophagy in ovarian cancer. PLoS ONE 7, e42265 (2012). [PubMed]

624.Suttana,W. et al. Differential chemosensitization of P-glycoprotein overexpressing K562/Adr cells by withaferin A and Siamois polyphenols. Mol. Cancer 9, 99 (2010). [PubMed]

625.Jeong,W.S. et al. Differential expression and stability of endogenous nuclear factor E2-related factor 2 (Nrf2) by natural chemopreventive compounds in HepG2 human hepatoma cells. J. Biochem. Mol. Biol. 38, 167-176 (2005). [PubMed]

626.Pan,H. et al. Sulforaphane protects rodent retinas against ischemia-reperfusion injury through the activation of the Nrf2/HO-1 antioxidant pathway. PLoS ONE 9, e114186 (2014). [PubMed]

627.Sun,C. et al. Sulforaphane alleviates muscular dystrophy in mdx mice by activation of Nrf2. J. Appl. Physiol (1985. ) 118, 224-237 (2015). [PubMed]

628.Dinkova-Kostova,A.T., Fahey,J.W., & Talalay,P. Chemical structures of inducers of nicotinamide quinone oxidoreductase 1 (NQO1). Methods Enzymol. 382, 423-448 (2004). [PubMed]

629.Subedi,L., Lee,J.H., Yumnam,S., Ji,E., & Kim,S.Y. Anti-inflammatory effect of sulforaphane on LPS-activated microglia potentially through JNK/AP-1/NF-kB inhibition and Nrf2/HO-1 activation. Cells 8, (2019). [PubMed]

630.Yang,S.H. et al. Sulforaphane prevents testicular damage in Kunming mice exposed to cadmium via activation of Nrf2/ARE signaling pathways. Int. J. Mol. Sci. 17, (2016). [PubMed]

631.Yang,S.H. et al. Sulforaphane protect against cadmium-induced oxidative damage in mouse Leydigs cells by activating Nrf2/ARE signaling pathway. Int. J. Mol. Sci. 20, (2019). [PubMed]

632.Ali,F. et al. Statin-mediated cytoprotection of human vascular endothelial cells: a role for Kruppel-like factor 2-dependent induction of heme oxygenase-1. J. Thromb. Haemost. 5, 2537-2546 (2007). [PubMed]

633.Alam,J., Shibahara,S., & Smith,A. Transcriptional activation of the heme oxygenase gene by heme and cadmium in mouse hepatoma cells. J. Biol. Chem. 264, 6371-6375 (1989). [PubMed]

634.Jaramillo,M.C. & Zhang,D.D. The emerging role of the Nrf2-Keap1 signaling pathway in cancer. Genes Dev. 27, 2179-2191 (2013). [PubMed]